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Abstract. We study the long-time behavior of solutions to the nonlinear Schrödinger /
Gross-Pitaevskii equation (NLS/GP) with a symmetric double-well potential. NLS/GP
governs nearly-monochromatic guided optical beams in weakly coupled waveguides with
both linear and nonlinear (Kerr) refractive indices and zero absorption, as well as the
behavior of Bose-Einstein condensates. For small L2 norm (low power), the solution
executes beating oscillations between the two wells. There is a power threshold at which
a symmetry breaking bifurcation occurs. The set of guided mode solutions splits into two
families of solutions. One type of solution is concentrated in either well of the potential,
but not both. Solutions in the second family undergo tunneling oscillations between the
two wells. A finite dimensional reduction (system of ODEs) derived in [18] is expected
to well-approximate the PDE dynamics on long time scales. In particular, we revisit this
reduction, find a class of exact solutions and shadow them in the (NLS/GP) system by
applying the approach of [18].

1. Introduction

We study the long-time behavior of solutions to the nonlinear Schrödinger / Gross-
Pitaevskii equation (NLS/GP) with a symmetric double-well potential in R1. Equations of
NLS/GP-type, in one or more spatial dimensions, arise as models of many physical systems,
notably (a) nearly-monochromatic guided optical beams in weakly coupled waveguides with
both linear and nonlinear (Kerr) refractive indices and no absorption [3, 22], and (b) the
time-evolution of a Bose-Einstein condensate (BECs) confined by a magnetically-induced
linear potential [5, 6, 7, 8, 24].

Specifically, we consider NLS/GP in one space dimension

(1.1) i∂tu(x, t) =
(
−∂2

x + V`(x)
)
u(x, t) + g |u(x, t)|2 u(x, t), u(x, t) : R× R→ C,

where V`(x) denotes a double well potential. In the context of optics, u(x, t) denotes the
complex-valued slowly varying envelope of the electric field for a nearly monochromatic
stationary beam propagating in the “t” direction. The potential V`(x) is obtained from the
transverse refractive index profile of the two coupled waveguides and g < 0 is proportional
to the Kerr nonlinear coefficient. In the macroscopic quantum setting, u(x, t) denotes a
macroscopic (mean-field) wave-function, V`, the magnetic trap and g, which is proportional
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to the microscopic two-body scattering length, can be positive or negative, depending on
the underlying atomic species.

A key quantity conserved by solutions of (1.1) is the squared L2 norm,

(1.2) N ≡
∫ ∞
−∞
|u(x, t)|2dx =

∫ ∞
−∞
|u(x, 0)|2dx

corresponding in the two systems to (a) the optical power, conserved with propagation
distance, and (b) the particle number, conserved under the time evolution. The aim of this
paper is to describe how long term dynamics of specific solutions of equation (1.1) vary
with N , extending the result of [18].

1.1. Background and prior results.

Linear theory of double wells. We take the double-well, V`(x), to be bimodal, i.e. the sum
of translates of a unimodal potential V0(x),

V`(x) = V0(x− `) + V0(x+ `), ` > 0.

We shall assume that the basic well, V0(x), is spatially localized and even with respect to
x = 0:

V0(x) = V0(−x),

and supports exactly one discrete eigenpair, (Ω?, ϕ?(x)) which solves(
−∂2

x + V0(x)
)
ϕ? = Ω?ϕ?.

Without loss of generality, we assume ‖ϕ?‖L2 = 1.

For ` large and positive, detailed information for the double-well Schrödinger operator

H` = −∂2
x + V`.

can be deduced from the properties of the basic single well, V0(x) [13]. In particular, there
is a well-separation distance, `0 > 0, such that if ` > `0 (weak-coupling), then the linear
operator H` has two simple eigenvalues, Ω0 = Ω0(`) and Ω1 = Ω1(`), with

Ω0(`) < W? < W1(`)and Ω1(`)− Ω0(`) = O
(
e−c0`

)
,

for some c0 > 0. By the symmetry of V`, the corresponding eigenfunctions ψj = ψj(x; `),
satisfying

H`ψj = Ωjψj, j = 0, 1

may be taken to be L2-normalized and possess, respectively, even and odd spatial symmetry:

ψ0(x) = ψ0(−x), ψ1(x) = −ψ1(−x).

For sufficiently large `, these eigenfunctions are bimodal and satisfy

(1.3) ψj(x; `) ≈ 1√
2

(
ϕ?(x− `) + (−1)jϕ?(x+ `)

)
, `� 1, j = 0, 1.
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Nonlinear standing waves. There has been a great deal of interest in the existence, stability,
and bifurcations of stationary solutions to NLS/GP (1.1) of standing wave type:

u(x, t) = U(x)e−iωt.

For fixed value N > 0, U = U(x;N ) and ω = ω(N ) denotes a solution of the nonlinear
eigenvalue problem defined jointly by equation (1.2) and by

(1.4)
(
−∂2

x + V`(x)
)
U + g|U |2U = ωU, U ∈ H1(R).

Questions of both mathematical and physical interest are:

(1) Given N > 0, classify the solutions of (1.4).
(2) How does the set of solutions vary as N is increased?

In [16], it is shown that there exist solution branches which are continuations of the linear

solutions as N → 0, i.e. such that for j = 0, 1, Uj(x;N ) ∼
√
Nψj(x) and ω → Ωj, and that

these branches possess the same symmetries as their linear counterparts. In the case of
focusing nonlinearity (g < 0), they find that the “ground state solution,” the continuation of
the linear ground state ψ0(x), undergoes a symmetry-breaking bifurcation asN is increased.
Fix ` > `1 sufficiently large. Then, there exists a threshold power / particle number,
Ncr(`), such that for 0 < N < Ncr(`), the only solutions to equation (1.4) are U0(x;N ) and
U1(x;N ), but for N > Ncr, there exists another pair of solutions U±(x;N ), concentrated
in the left or in the right well but not symmetrically in both. As N is increased further,
the solution becomes concentrated more strongly in one well or the other. Moreover, for
N > Ncr, stability is transferred from the ground state U0(x;N ) to the asymmetric states
U±(x;N ).

The analysis of [16] is based on a Lyapunov-Schmidt reduction. For N > 0 small,
solutions are decomposed into their projections onto the span of {ψ0, ψ1} and their pro-
jection onto the orthogonal complement. For ` large, one may view this system as a
two-dimensional system of nonlinear algebraic equations, which is weakly coupled to an
infinite dimensional system. The two-dimensional truncated system has a bifurcation dia-
gram of the type described above and it can be shown that neglected (infinite-dimensional)
corrections are small for ` large. In particular, if Ncr(`) denotes the approximate symmetry
breaking threshold obtained from the 2-dimensional reduction, then we have that

|Ncr(`)−Ncr(`)| ≤ O(|Ω0(`)− Ω1(`)|) ≈ e−κ`, for some κ > 0,

see [16], Equation (1.1).

Remark 1.1. Throughout this paper we shall assume g < 0, the case of focusing nonlin-
earity. For the defocusing nonlinearity g > 0, an analogous result holds with one difference.
It is the mode U1(x,N ) that undergoes a symmetry-breaking bifurcation as N is increased;
see for example [26].

The standing-wave result has been generalized in several ways. Kirr, Kevrekidis, and
Pelinovsky [15] perform a global bifurcation analysis for the class of symmetric double
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well potentials with a non-degenerate maximum. Yang, in [27, 28], studies the detection
and classification of symmetry-breaking bifurcations in NLS equations with more general
nonlinearities. In [14], Kapitula et al. study the richer family of bifurcations for NLS with
triple well potentials.

Time-dependent dynamics. To study the dynamics of solutions to NLS/GP near the sym-
metry breaking bifurcation it is natural to express the solution to the initial value problem
as

(1.5) u(x, t) = c0(t)ψ0(x) + c1(t)ψ1(x) + ρ(x, t), 〈ψj(·), ρ(·, t)〉 = 0, j = 1, 2,

where c0(t) and c1(t) are time-dependent complex-valued amplitudes and ρ(x, t), the pro-
jection of u(x, t) onto span⊥{ψ0, ψ1}. The resulting system consists of ODEs for c0(t) and
c1(t) coupled to a PDE solved by ρ(x, t) and is mathematically equivalent to NLS/GP.

In [18], the latter two authors pursue the following strategy. First, they derive a finite-
dimensional model by neglecting the terms involving ρ(x, t) in the evolution equations for
c0(t) and c1(t). This is reduced by symmetry to an ODE resembling the Duffing equation,
which is studied by phase-plane methods. Second, they show that solutions to the full PDE
system shadow the ODE solutions on very long time-scales.

The standing wave solutions Uj(x;N ) and U±(x;N ) correspond to fixed points of this
reduced system. The stability of the standing waves corresponds to that of these fixed
points, as shown in [16]. Since the reduced system is conservative and two-dimensional,
stable fixed points are surrounded by families of nested periodic orbits. The result proven
in [18] is that the periodic orbits sufficiently close to these stable fixed points are shadowed
by solutions to (1.1) over long but finite times. The result of the present paper is to extend
the shadowing theorem to other periodic solutions of the ODE that are not confined to small
neighborhoods of stable fixed points. This is explained further using the phase portrait in
Section 1.2 below.

In recent related work, Pelinovsky and Phan [23] use a different reduction ansatz that
leads to the standard Duffing oscillator. They control shadowing of a wider class of orbits
than in [18] using only energy-type estimates and Gronwall’s inequality in large data and
arbitrary ` regimes provided there exist two distinct eigenvalues for H`. On the other hand,
in the decomposition (1.5), the representation of the initial conditions is more straightfor-
ward. In the present work, we furthermore extend the results of [18] to include orbits
outside the separatrix, expanding the class of orbits we can shadow to be much closer to
that of [23].

1.2. Qualitative discussion of results.

The finite-dimensional model. In [18], by neglecting coupling to ρ(t), equation (1.1) is
viewed as a perturbation of the following two degree of freedom Hamiltonian ODE system
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for the evolution of (c0(t), c1(t)). Under the change of variables [17, 25]

c0(t) = A(t)eiϑ(t),

c1(t) = (α(t) + iβ(t))eiϑ(t),
(1.6)

the evolution of the overall phase ϑ(t) decouples from the evolution of the other three
quantities, due to the phase invariance of the underlying physical system, to give

(1.7a)


α̇ =

(
Ω10 + 2α2

)
β,

β̇ = −
(
Ω10 + 2α2 − 2A2

)
α,

Ȧ = −2αβA,

and

(1.7b) ϑ̇ = ω − Ω0 + A2 + 3α2 + β2,

for

(1.8) Ω10 = Ω1 − Ω0.

We can assume A ≥ 0 with A = 0 only on the invariant circle α2 + β2 = N .

As a shorthand for these coordinates, we define a four-dimensional vector and its three-
dimensional truncation

χ(t) = (α, β,A, ϑ) and χ̃(t) = (α, β,A).

A direct consequence of (1.7a) is the conserved quantity

(1.9) N = A2 + α2 + β2 = |c0|2 + |c1|2 ,
corresponding to the L2 invariance of (1.1). The constraint (1.9) can be used to further
reduce (1.7a) to the 2-dimensional system

(1.10)
d

dt

[
α
β

]
=

[
Ω10β

(2N − Ω10)α

]
+

[
2α2β

−4α3 − 2αβ2

]
= J∇HDW,

where

(1.11) HDW(α, β) =
Ω10

2
β2 +

σ

2
α2 + α4 + α2β2 and J =

[
0 1
−1 0

]
for

(1.12) Ω10 = Ω1 − Ω0, σ = Ω10 − 2N.

Note that (1.11) is a family of Hamiltonian systems parametrized by N .

The Hamiltonian HDW differs from the standard Duffing Hamiltonian,

(1.13) HDuffing =
1

2
p2 +

σ

2
q2 +

1

4
q4,

by the presence of the mixed term α2β2.
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The phase plane of system (1.10) is displayed in Figure 1. It is topologically equivalent
to that of the Duffing system (1.13) for either sign of σ. For σ < 0, the phase plane is
foliated by concentric closed curves enclosing the fixed point at the origin; see Figure 1(a).
For σ > 0, the origin becomes unstable and two stable fixed points appear, one on either
side of the origin; Figure 1(b). In this regime, the dynamics feature two types of periodic
orbits. There are two families of smaller periodic orbits, encircling exactly one of the stable
fixed points and a second family of periodic orbits encircling all three fixed points.

α

β

(a)

α

β

(b)

Figure 1. The phase plane of equation (1.10) with (a) N < Ncr and (b)
N > Ncr. The blue (darker) shaded regions represent the domain of validity
of the proof in [18] and the pink (lighter) shaded regions, the domains of
validity in this paper.

Control of large time behavior for solutions to (1.1) requires precise estimates of the pe-
riod and amplitude of the periodic orbits in the reduced dynamical system. These estimates
are straightforward for separable Hamiltonians of the form

H = p2 + V (q),

such as the Duffing oscillator. Although HDW is not separable, we nevertheless obtain
closed-form periodic orbits in Section 3. These are used to obtain appropriate estimates
on the periods and amplitudes required for the shadowing analysis in Section 4.

Interpretation of the ODE solutions. Our results describe orbits which have an interpreta-
tion in quantum and electromagnetic contexts. In the electromagnetic context, the orbits
we study represent nearly monochromatic beams within neighboring wave-guides exchang-
ing energy.

For quantum settings, by examining the form of the eigenfunctions (1.3), the solution
anszatz (1.5), and the reduction (1.6), notice that when α > 0 and β = 0, the basis
functions ψ0 and ψ1 interfere constructively in the left well, centered at x = −L and
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destructively in the right well, centered at x = L, so that most of the optical power is
concentrated in the left well. When α < 0, this is reversed and most of the power is
concentrated in the right well. Thus, for the two families of periodic orbits encircling only
one of the two fixed points in figure 1(b), most energy stays in one or the other of the
two potential wells. Solutions of this type are called self-trapped in the Bose-Einstein
condensate literature [2].

For the two families of periodic orbits in which α(t) changes sign, both for N < Ncr

and for solutions outside the separatrix for N > Ncr, the location and magnitudes of the
maximum and minimum of the reconstructed solution alternate with a fixed period. In the
subcritical case N < Ncr of Figure 1(a), the phase difference between c0 and c1 changes
slowly due to the closeness of the frequencies Ω0 and Ω1. For small-amplitude periodic
orbits, this is a manifestation of the common beating phenomenon, while for solutions
further from the origin, we refer to this as nonlinear beating. Periodic orbits encircling
all three fixed points in Figure 1(b) are known as Josephson tunneling solutions in
the BEC literature, where the word tunneling refers to the fact that these orbits must
cross a local maximum of the potential energy to travel between the two wells. Note
that the nonlinear beating solutions speed up as they cross α = 0, while the Josephson
tunneling solutions slow down. At large amplitude, there is no practical difference between
Josephson tunneling and nonlinear beating solutions. Both self-trapped and Josephson
tunneling solutions have been directly observed in Bose-Einstein condensates by Albiez et
al. [2].

It is instructive, also, to construct approximate periodic solutions using equations (1.5)
and (1.6) corresponding to the different families of trajectories displayed in Figure 1. These
are shown in Figures 2 and 3. Figure 2 shows two nonlinear beating solutions in the
subcritical regime N < Ncr. The first is a small periodic orbit around to the origin, in
which case the solution stays very close to the symmetric mode ψ0. In the second, the
values of A and |α(t) + iβ(t)| are close, and the solution migrates almost completely from
the right well to the left well each period.

Figure 3 shows four orbits in the supercritical regime N > Ncr. The first two are self-
trapped, and the last two are Josephson tunneling solutions. Subfigure (a) shows a solution
close to the right fixed point, the field makes small oscillations about a steady asymmetric
profile. Subfigures (b) and (c) show solution trajectories near the separatrix. Both these
trajectories spend long times close to the hyperbolic fixed point α = β = 0, where the field is
nearly symmetric, with short bursts to asymmetric states. In (b), inside the separatrix, all
these bursts move toward one asymmetric state, but in (c), the field alternates between the
two. Finally in subfigure (d), the solution makes larger swings between the two asymmetric
states without pausing near the symmetric state. The earlier result of [18] essentially shows
the existence of the solutions of type (a) in both the subcritical and supercritical regimes,
while the present result allows for patterns similar to those seen in the rest of the figures.
Direct numerical simulations of NLS/GP can be seen, for comparison, in [18].
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Figure 2. Nonlinear beating solutions of system (1.10) in the case N < Ncr.
Top row: A(t) (red), |α(t) + iβ(t)| (blue solid), α(t) (blue dashed), β(t) (blue
dash-dot). Bottom row: absolute value of reconstructed field, c0ψ0 + c1ψ1,
in (1.5). Subfigure (a) shows a solution near the stable fixed point, and (b)
shows a larger periodic orbit.

We now give a non-technical statement of the main result generalizing Theorem 5.1
of [18], which applies only to periodic orbits lying sufficiently close to stable equilibria
of (1.7a). A precise statement appears in Sec. 2, Theorem 2.1.

Main Result: Let 0 < |N −Ncr| be sufficiently small. For periodic solutions to the ODE
system (1.10) of sufficiently small amplitude for N < Ncr or N > Ncr, as long as the
periodic solutions are sufficiently bounded away from the separatrix in the case N > Ncr,
there are corresponding solutions to the NLS equation (1.1) which shadow these orbits of
the finite dimensional reduction on very long, but finite, time scales.

The remainder of this paper is organized as follows: Section 2 contains a precise formu-
lation of the main result, Theorem 2.1. Section 3 presents exact formulae for the periodic
solutions of (1.10), from which we derive period and amplitude estimates in Section 4.
These bounds are used to show that the periodic orbits or the finite dimensional dynamical
system satisfy the assumptions of Theorem 2.1. The section concludes with a discussion of
how to apply these estimates together with the analysis of [18] to prove the main theorem.
Section 5 contains concluding remarks and a discussion of future directions. The proof in
this paper takes advantage of the exact solutions, which are convenient, but are not an
essential feature for such a shadowing result to hold. Appendix A details the use of Lie
transforms to construct a normal form for system (1.10). This is a possible first step in
completing the proof in the absence of exact solutions.
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Figure 3. As in figure 2 but for N > Ncr. (a) Near the fixed point α =√
−σ/2. (b) Just inside the separatrix. (c) Just outside the separatrix. (d)

Far outside the separatrix. Note the difference in time scales between the
various figures.

2. The main theorem

We begin by describing the regions of parameter space and phase space in which the
results hold. Our results apply to the regime

|N −Ncr| � Ncr � 1.

Recall from [18] that when `� 1, we have

Ncr = O(Ω1(`)− Ω0(`)) = O
(
e−κ`

)
for κ > 0.

Hence, we will define an asymptotic parameter σ such that

Ncr = O(σγ), σ � 1 (`� 1)
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with 7/9 < γ < 1 as specified in Theorem 2.1 and take initial N such that

|N −Ncr| ≤ σ.

The 7/9 here is not sharp, but is a remnant of the asymptotic techniques in [18].

The main result of this paper is the following theorem. Note that the key difference
between Theorem 5.1 of [18] and our main result, Theorem 2.1 (below), is that we now
omit Assumption 3 of [18]. We will use the statement and part of the proof of [18], Theorem
5.1 in Section 4.3.

Theorem 2.1. There exists σ0 > 0 sufficiently small such that for all 0 < σ < σ0 and
7
9
< γ < 1. Denote by

χ̃∗(t) =
(
Ã(t), α̃(t), β̃(t)

)
,

a periodic solution of (1.7a), satisfying the following two assumptions:

(H1) Its period Tperiod(σ) is not too large, as a function of σ, specifically

(2.1) Tperiod(σ) . (|Ncr −N |Ncr)
− 1

2 = σ−
1+γ
2 ,

(H2) The fundamental matrix solution M(t) of the dynamics linearized about χ∗(t) sat-
isfies the norm bound:

(2.2) 0 < s, t < Tperiod(σ) implies
∥∥M(t)M−1(s)

∥∥ ≤ C

(
N +Ncr

|N −Ncr|

) 1
2

= C σ
γ−1
2 .

Fix ε > 0 sufficiently small. Then, there exist δ0, δ1 > 0 depending upon ε, γ such that the
following holds. Consider initial data of the form

u0(x) = eiθ(0)
(
Ã(0)ψ0(x) + [α̃(0) + iβ̃(0)]ψ1(x)

)
with θ(0) ∈ R chosen arbitrarily. Then, there exists solution u(x, t) of (1.1) shadowing the
periodic orbit of the (1.7a), of the form

u(x, t) = eiθ(t)
(

(Ã(t) + ηA(t))ψ0(x) + [(α̃(t) + ηα(t)) + i(β̃(t) + ηβ(t))]ψ1(x)

+R̃(x, t) + w(x, t)
)
.

(2.3)

Here, θ(t) ∈ C1([0, T∗(σ)]), and the remainder terms ηA, ηα, ηβ, w, and R̃ have the following
properties:

(B1) The function R̃ satisfies ∥∥∥R̃∥∥∥
L∞t,x

. σ1+δ0

and is the solution of

(2.4) iR̃t = (H − Ω0)R̃ + (Ã2 + 3α̃2 + β̃2)R̃ + PcFb(χ∗),

where Fb is displayed in Equation (2.5) and Appendix A of [18].
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(B2) We have η(t) ≡ ( ηA(t), ηα(t), ηβ(t)) ∈ C1([0, T∗(σ)]) and w(t, x) ∈ L∞t H1
x ∩ L4

tL
∞
x

with the bounds

‖η‖L∞t [0,T∗(σ)] + ‖w‖L∞t ([0,T∗(σ)];H1
x) + ‖w‖L4

t ([0,T∗(σ)];L∞x ) . σ
1
2

+δ1 ,

for all t ∈ I = [0, T∗(σ)] = [0, Tperiod(σ) σ−ε].

Remark 2.1. The full system we solve in Theorem 2.1 can be found in equations (2.5)−
(2.6) and (2.11) − (2.17), with all error terms written out in Appendix A of [18]. Up
to a phase shift, the phase term θ(t) in equation (2.3) evolves under an equation similar
to (1.7b) for ϑ(t) in equation (1.6), though it differs by a small interaction term stemming
from error terms in the full PDE expansion. This leads toO(1) differences on the time scales
considered. This is discussed in greater detail in appendix A and Section 3.1 of [18] and
revisited in Section 4.3 below. The δ0 and δ1 are sufficiently small, but non-zero constants
chosen such that the bootstrapping arguments of [18] hold. In particular, they arise from
the fact that the error terms must remain of lower order than the dominant dynamics over
the time scale we study.

The proof that there exist periodic orbits of the finite dimensional model that are shad-
owed by solutions to NLS is then provided by the following Lemma:

Lemma 2.1. There exists σ0 > 0 and δ > 0 (chosen as in [18]), such that for 0 < σ < σ0,

the system (1.10) has periodic solutions (α̃, β̃)(t) which through equation (1.9) determine a
periodic function A(t) such that:

|Ã(t)|2 = O(σγ), |α̃(t)|2 + |β̃(t)|2 = O(σ), N > Ncr = σγ,

|Ã(t)|2 = O(σγ), |α̃(t)|2 + |β̃(t)|2 = O(σ1+δ), N < Ncr = σγ.

The periods of these orbits satisfy the bound (2.1) required in Theorem 2.1. Furthermore,
the fundamental solution matrix M(t) for the linearized system (see systems (3.37), (3.39)
of [18]) about these periodic orbits satisfies the bound (2.2) from Theorem 2.1.

We next embark on the proof of this theorem, beginning with constructing periodic orbits
and bounding their periods.

3. Explicit Construction of Periodic Orbits

To solve the ODE system (1.10), we first obtain a simpler form of the equations by the
following rescaling:

(3.1) α =

√
Ω10

2
q(τ), β =

√
Ω10

2
p(τ), τ = Ω10t.
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In terms of the new variables p, q, the Hamiltonian (up to the addition of a constant) is
given by

HDW(q, p) =
1

2
(1 + q2)p2 +

1

2

(
q2 − ζ

2

)2

≡ T (q, p) + V (q),

ζ = (2N − Ω10)/Ω10 = O
(
σ1−γ) .(3.2)

The potential energy V (q) has double-well structure in the supercritical case ζ > 0 (N >
Ncr). Note that the kinetic energy depends both on the position and momentum. When

ζ > 0, the system has three fixed points, a saddle at q = 0, and centers at q = ±
√

ζ
2
.

From q̇ = ∂H
∂p

= (1 + q2)p, we obtain p = q̇/(1 + q2). By conservation of Hamiltonian, a

solution with initial condition (q(0), p(0)) = (q0, 0) satisfies

H(τ) = H(0) =
1

2

(
q2

0 −
ζ

2

)2

=
1

2
(1 + q2)p2 +

1

2

(
q2 − ζ

2

)2

=
1

2

q̇2

1 + q2
+

1

2

(
q2 − ζ

2

)2

.

Solving for q̇2 yields

(3.3) q̇2 =
(
1 + q2

)((
q2

0 −
ζ

2

)2

−
(
q2 − ζ

2

)2
)

=
(
1 + q2

) (
q2

0 − q2
) (
q2 + q2

0 − ζ
)
.

We now proceed with the exact integration of (3.3).

Josephson Tunneling and Nonlinear Beating Solutions. Let us first analyze orbits exterior
to the separatrix for N > Ncr. By (3.2), this implies that q0 −

√
ζ > 0. Define a by

a2 ≡ q2
0 − ζ.

Equation (3.3) may be rewritten as

q̇2 =
(
1 + q2

) (
q2

0 − q2
) (
a2 + q2

)
.

Separation of variables and integration yields

τ = −
∫ q

q0

dq̃√
(1 + q̃2) (a2 + q̃2) (q2

0 − q̃2)
=

1√
(1− a2)(1 + q2

0)

∫ B

u

dQ√
(A2 +Q2)(B2 −Q2)

,

where we have defined

q̃ =
Q√

1−Q2
, A2 =

a2

1− a2
, B2 =

q2
0

1 + q2
0

, and u2 =
q2

1 + q2
.

A further simplification is reached via the trigonometric substitution Q = B sin θ (see
also [12, integral 3.152.4])∫ B

u

dQ√
(A2 +Q2)(B2 −Q2)

=
1√

A2 +B2
F (δ, k),



SELF-TRAPPING AND JOSEPHSON TUNNELING SOLUTIONS TO NLS 13

where F (δ, k) is the incomplete elliptic integral of the first kind given by

F (µ, k) =

∫ µ

0

dt√
1− k2 sin2 t

, 0 ≤ k < 1,

and

(3.4) k2 =
B2

A2 +B2
=

(1 + ζ − q2
0) q2

0

2q2
0 − ζ

and δ = cos−1 u

B
.

Some calculation yields the formula

ωτ = F (δ, k),where ω =

√
q2

0 −
ζ

2
.

To obtain q as a function of τ requires an identity that inverts the equation θ = F (δ, k).
This inverse defines the Jacobi elliptic function:

sn(θ, k) = sin δ.

An introduction to these quantities in the language of modern dynamical systems is [20],
while a comprehensive handbook is by Byrd and Friedman [4]. The functions cn and dn
are defined in a similar manner. From here, there remains only the algebra to invert all the
above changes of variables, which makes use of the identity sn2(δ, k) + cn2(δ, k) = 1, and
eventually arrives at

q(τ) =
q0 cn (ωτ, k)√

1 + q2
0 sn2 (ωτ, k)

.

The orbit q(t) has period given in terms of K(k), the complete elliptic integral of the first
kind

(3.5) T =
4F
(
π
2
, k
)

ω
=

4K(k)

ω
=

4

ω
K

(
q0

√
1 + ζ − q2

0

2q2
0 − ζ

)
.

This is a decreasing function of q0 for q0 >
√
ζ and fixed ζ. For the case N < Ncr, we note

that ζ < 0, hence the analysis follows in an identical fashion.

Self-trapping solutions. The periodic orbits encircling only one fixed point in the supercrit-
ical case ζ > 0 may be found in the same manner. These orbits are of the form

q(t) = ± q0 dn (ωt, k)√
1 + q2

0k
2 sn (ωt, k)2

,

with
√
ζ/2 < q0 <

√
ζ, ω2 =

(1 + ζ − q2
0) q2

0

2
, and k2 =

2q2
0 − ζ

q2
0 (1 + ζ − q2

0)
.
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Then, once again we have

T =
2F
(
π
2
, k
)

ω
=

2K(k)

ω
=

2

ω
K

(
q0

√
2q2

0 − ζ
q2

0 (1 + ζ − q2
0)

)
.

4. Bounds on the monodromy matrix and the period for Josephson
Tunneling orbits

4.1. Verification of Hypothesis (H1) from Theorem 2.1 and amplitude bounds
from Lemma 2.1. We now prove the period estimate (2.1) from the expression (3.5).
Each orbit of (1.7a) has an initial condition of the form

χ̃(0) = (α0, 0, A0),

where α2
0 + A2

0 > Ncr = σγ. The exact solution α(t) and β(t) to system (1.7a) is given by
equations (3.1). Then, A(t) is computed from (1.9). The values of q0 and ζ in terms of σ
are read off these expressions.

Using the asymptotic parameter σ as set in (1.12), we have that the parameters Ω10 =
O(σγ) and ζ = O(σ1−γ). With this choice of Ω10(σ) and ζ(σ), Hypothesis (H1) of Theo-
rem 2.1 holds for initial values, q0, for which

(4.1) T =
4K (k(ζ, q0))

ωΩ10

= O
(
σ−

1+γ
2

)
,

where k(ζ, q0) is given by (3.4).

To satisfy (4.1), we take

(4.2) C ≥ q0 ≥
√

3ζ

2
∼
√

3

2
O
(
σ

1−γ
2

)
,

for some C(σ) bounded from above but that we do not attempt to optimize here. Then,

ω =
√
q2

0 − ζ/2 ≈ σ
1−γ
2 . Therefore, ωΩ10 ≈ σ

1+γ
2 . To prove the bound (4.1) it suffices to

show K (k(ζ, q0)) = O(1).

The complete elliptic integral has the asymptotic behavior K(k)→∞ logarithmically as
k2 → 1, where k2−1 in effect encodes the distance of the exact solution from the separatrix.
Hence, we must choose q0 sufficiently far from the separatrix such that K(k) is uniformly
bounded with a computable constant dependent upon k0 when |k| < k0 < 1. Indeed, we
observe via a Taylor expansion of k in the parameter ζ/2q2

0 in equation (3.4) that

k ≤ 7

8
for q0 ≥

√
3

2
σ

1−γ
2 .

More specifically, given the scaling
√
ζ � q0 � σ, equation (3.4) yields the approximation

k ≈ 1

2
+

ζ

4q2
0

,
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which for q0 as in (4.2) and σ sufficiently small implies

k ≤ 1

2
+
∞∑
j=1

ζ

4q2
0

+O(σ
1−γ
2 ) ≤ 3

4
+O(σ

1−γ
2 ) <

7

8
.

It follows that

T <
4K(7/8)

ωΩ10

= O
(
σ−

1+γ
2

)
∼ Tshadow, using ω =

√
q2

0 − ζ/2, Ω10 = 2Ncr.

At this stage we note that as K is a decreasing function as k → 0, hence orbits orbits
sufficiently close to the separatrix violate the period bound (2.1). Also, the choice of 7/8
is not sharp, but suffices to bound the term 3(1 + σ)/4 arising as the leading order of the
Taylor expansion of k using (4.2).

To verify the amplitude bounds from Lemma 2.1 for q0 satisfying estimate (4.2), we
directly evaluate (3.1) and observe

(4.3) |α|, |β| . σ
1
2

which, using the conservation equation (1.9), where N − α2 − β2 ∼ σγ gives

(4.4) |A| . σ
γ
2 .

4.2. Verification of hypothesis H2 from Theorem 2.1. Equations (3.36)–(3.39) of [18]
discuss the linearization of system (1.7) about an arbitrary periodic solution,

χ∗ = (α∗, β∗, A∗, θ∗)

with period T∗. Separating the linearized evolution component into the coupled (α, β,A)
system (1.7a) and the independent θ evolution equation yields

d

dt

δαδβ
δA

 =

 4α∗β∗ 2(Ncr + α2
∗) 0

−(Ω10 + 6α2
∗ − 2A2

∗) 0 −4α∗A∗
−2A∗β∗ −2α∗A∗ −2α∗β∗

δαδβ
δA

 ≡ B(t)

δαδβ
δA

 ;(4.5a)

d

dt
(δθ) =

[
6α∗ 2β∗ 2A∗

]
·

δαδβ
δA

 .(4.5b)

Floquet’s theorem says that there exists a matrix-valued T∗-periodic function P (t) and a
constant matrix B∗, such that the fundamental solution matrix of subsystem (4.5a) with
initial condition M(t) = 0 is

M(t) = P (t)eB∗t with P (0) = P (T∗) = I.

In [18], Section 3.3, the authors construced M∗ = eB∗t at a stable equilibrium point,
then restricted their analysis to nearby periodic orbits, for which they could prove bounds
on M(t) perturbatively. Here, we explicitly construct the matrix M at any periodic orbit
using the exact solution derived in Section 3. The linearly independent column vectors
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generating the matrix M are found by differentiating equation (1.7a) with respect to the
canonical system parameters ζ, q0 and t. These represent translation in the mutually
orthogonal directions through energy space (translation perpendicular to the phase plane
through energy space), within the energy plane onto a nearby orbit (translation in the
normal direction to an orbit) and along a heteroclinic orbit respectively (translation in the
tangential direction to an orbit).

To proceed, we evaluate the periodic solution χ(t) and then its derivatives ∂tχ, ∂q0χ,
and ∂ζχ using the exact solution. Each of these vectors solves equation (4.5b). A matrix
whose columns are given by these three vectors, or, in fact by any three independent linear
combinations of these solutions, defines a fundamental solution matrix. Of these three
vectors, the first is T -periodic in time, while the second and third exhibit linearly-growing
oscillations.

We first compute

∂tχ =

 σ
1
2 q̇(σγt)

σ
1
2 ṗ(σγt)

−(αα̇ + ββ̇)(N − α2 − β2)
− 1

2

 .
At t = 0, only the second component is nonzero, so we can define the renormalized vector

χ ren
t (0) =

0
1
0

 .
The vectors ∂q0χ and ∂ζχ can be computed similarly. As the expressions for them in

general is rather long, we display here only their values at t = 0:

∂q0χ|t=0 =

 1√
2
Ω

1
2
10

0
−q0Ω10A

−1(0)

 and ∂ζχ|t=0 =

 0
0

1
2
(1− q2

0)A−1(0)

 .
Using from Section 4.1 that A(0) = O

(
σ
γ
2

)
, these may be renormalized to

χ ren
q0

(0) =

 1
0

−C σ
1−γ
2

 and χ ren
ζ (0) =

0
0
1

 ,
where C is a positive O(1) constant. We can then define the fundamental solution matrix

(4.6) M̃(t) =
[
χ ren
q0

(t) χ ren
t (t) χ ren

ζ (t)
]
,

and the matrix

(4.7) M(t) = M̃(t)M̃−1(0).

Note, since M(0) = I, M(T ) is the monodromy matrix for the Floquet system (4.5a).



SELF-TRAPPING AND JOSEPHSON TUNNELING SOLUTIONS TO NLS 17

To prove (2.2) for the fundamental solution operator M(t), we prove first that the growth
over one full period is bounded. Then, we prove that the variation within a single period
is bounded.

Lemma 4.1. The eigenvalues of the monodromy matrix M(T ) are λ1 = λ2 = λ3 = 1. As a
consequence the eigenvalues of B∗ are all zero. In addition, M(T ) has at least two linearly
independent eigenvectors, so that

∥∥eB∗T∥∥ < 1 + cT .

Proof. This lemma is essentially Proposition 3.3 in [18], but we recall the proof here for

completeness. It is clear that χ̇ = (α̇(t), β̇(t), Ȧ(t)) is a solution to (4.5a), giving at least
one Floquet multiplier λ1 = 1. Similarly, differentiation with respect to the period gives a
similar result, implying λ1 = λ2 = 1.

The exact solutions α and β, satisfy the symmetries α(t) = α(T−t) and β(t) = −β(T−t).
Hence

(4.8)

∫ T

0

α(s)β(s)ds = 0.

In Floquet theory, Liouville’s formula provides the determinant of the monodromy matrix
ML for the system

Ẋ = L(t)X

for L(t+ T ) = L(t). It states

detML(T ) = e
∫ T
0 Tr(L)(s)ds.

Hence, given tr(B(t)) = 2α(t)β(t), equation (4.8) implies λ1 · λ2 · λ3 = 1 and, as a result,
λ3 = 1.

Note, using a similar approach to above, there exist at least two linearly independent
vectors by using differentiation in t and T .

�

The above lemma shows that the n-times iterated monodromy operator satisfies the
bound

‖M(nT )‖ ≤ 1 + C(nT ) = O
(
nσ−

1+γ
2

)
for some positive constant C. In order to show that the solution to (1.1) stays close to
the finite dimensional orbit χ∗ on the time scale of shadowing, we require that the norm of
M(t) for 0 < t < T does not grow too large to prevent us from applying the bootstrapping
arguments in the proof of the main theorem from [18]. Hence, we require slightly better
control on the growth of M than we have currently shown. Indeed, we require the following
lemma bounding the operator within a the evolution of a single period.

Lemma 4.2. Let M(t) be the fundamental solution matrix defined by (4.7), then for 0 <

s, t < T ∼ σ−
1+γ
2 , ‖M(t)‖ = O

(
σ
γ−1
2

)
.
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Proof. Note, it suffices to prove this theorem for M̃ in (4.6). To prove this, we may simply
calculate the entries in M̃(t) and find the maximum magnitude of each as a function of
time over all values of 0 ≤ t < T . To begin, we recall the functional form the exact solution
for α(t):

α(t) =

√
Ω10

2
q0

cn(ωΩ10t, k)√
1 + q2

0 sn2(ωΩ10t, k)
.

There are similar expressions for β(t) and A(t). We will make use of the fact that cn(z, k),
sn(z, k), and their z-derivatives are bounded functions for all k and z, and that derivatives
with respect to k exhibit linearly-growing oscillations for fixed k and increasing z. These
bounds take advantage of the extensive literature on Jacobi elliptic functions [4, 1].

Since we have chosen q0 and ω such that k, K and K ′ = dK
dk

are uniformly bounded,
we can find similar bounds for β and A but must be mindful of the dependence on the
asymptotic parameter σ in constructing the fundamental solution matrix. We observe that
the fundamental solution matrix can be represented in terms of the column vectors defined
in (4.7). Note, under such a choice

M̃(0) ≡ I3 − Cσ
1
2
− γ

2

0 0 0
0 0 0
1 0 0


and

M̃−1(0) ≡ I3 + Cσ
1
2
− γ

2

0 0 0
0 0 0
1 0 0

 .
A calculation relying upon boundedness of cn, sn and their derivatives in k reveals that in
addition to the leading-order terms at t = 0 discussed above, the implicit differentiation
in the columns of M(t) does not introduces terms that do not lead to linear growth in t
(i.e. purely periodic solutions) and terms that have linear growth as observed in the orbits
in [18], Proposition 3.3.

The terms without linear growth have coefficients of the form:
√

Ω10q0

Tperiod

,
−
√

Ω10q0

k

∂k

∂ζ
,
−
√

Ω10q0

K(k)

∂k

∂ζ
,
−
√

Ω10q0

k

∂k

∂q0

,

and
−
√

Ω10q0

K(k)

∂k

∂q0

,
√

Ω10q0κ
′(k)

∂k

∂ζ
,
√

Ω10q0κ
′(k)

∂k

∂q0

,

(4.9)

and have bounds maximum bounds given by

(4.10)
∂k

∂q0

= O
(
σ
γ−1
2

)
,
∂k

∂ζ
= O

(
σγ−1

)
.
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The terms that do grow linearly in t are of the form:

(4.11)
Ω

3/2
10 q0

K(k)

∂ω

∂q0

t,
Ω

3/2
10 q0

K(k)

∂ω

∂ζ
t,

Ω
3/2
10 q0K

′(k)

K2(k)

∂k

∂q0

ωt, and
Ω

3/2
10 q0K

′(k)

K2(k)

∂k

∂ζ
ωt.

Noticing that

‖M(t)‖ ≤
∥∥∥M̃(t)

∥∥∥∥∥∥M̃−1(0)
∥∥∥ ,

on the time scale of interest and keeping track of the renormalization constants, we observe
the fundamental solution bound is given by, for instance, the largest of the time-dependent
terms. Hence, ∥∥∥M̃(t)

∥∥∥ . Ω
3
2
10q0ωt∂ζk

(
K−2(k)K ′(k)

)
. σ

3γ
2 σ

1−γ
2 σ

1−γ
2 σ−

1+γ
2 σ−1+γO(1)

. O
(
σ
γ−1
2

)
,

using

Ω10 ∼ σγ, ω ∼ σ
1−γ
2 , t < Tperiod = σ−

1+γ
2

in addition to (4.10). This is the desired bound for M(t) given 0 ≤ t ≤ T . �

4.3. Brief Recap of the Perturbative Methods from [18]. Lemma 4.2 implies that
the evolution within one period is also bounded, hence the Duhamel evolution oper-
ator, M(t)M−1(s) for 0 < t − s < T , used in the perturbation theoretic arguments
from [18] has the same bound. Coupling this implicit Duhamel evolution bound, the
period bound from (4.1), and the amplitude bounds from (4.3) and (4.4) shows that as-
sumptions (2.1), (2.2) from Theorem 2.1 and the amplitude bounds in Lemma 2.1 all hold
for the exact solution. Hence, the dynamical solutions satisfy the assumptions of Theorem
5.1 in [18] for proving shadowing of the dynamical system for orbits outside the separatrix
in (1.10) and large orbits can be shadowed for long times in (1.1)!

Following the analysis in [18], we now write the system (4.5) with the orbit χ∗ given by
an exact periodic orbit of the finite dimensional truncation:

χ(t) = χ∗(t) + η,

≡
(
Ã(t) + ηA(t), α̃(t) + ηα(t), β̃(t) + ηβ(t)

)
,

where the ηA, ηα and ηβ will account for the error terms in gluing the finite dimensional
model equations into the full infinite dimensional model. This corresponds to a solution of
the form:

u(x, t) = eiθ(t)
(

(Ã(t) + ηA(t))ψ0 + [(α̃(t) + ηα(t)) + i(β̃(t) + ηβ(t))]ψ1 +R(x, t)
)
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with initial conditions

u0(x) = eiθ(0)
(
Ã(0)ψ0(x) + [α̃(0) + iβ̃(0)]ψ1(x)

)
.

Centered about χ∗, equation (1.1) becomes the system:

~̇η = DχFFD (χ∗(t)) ~η + [~FFD(χ∗ + ~η)− ~FFD(χ∗)−Dχ
~FFD(χ∗)~η] + ~GFD(χ∗, ~η;R, R̄)

iRt = (H − Ω0)R + (Ã2 + 3α̃2 + β̃2)R + Fb (χ∗ + η) + FR
(
χ∗ + η;R, R̄

)
+
(
A2 − Ã2 + 3(α2 − α̃2) + β2 − β̃2

)
R

with

θ̇ = −Ω0 + A2 + 3α2 + β2 +Gθ(R, R̄;A,α, β).

Here, ~FFD and Fb represent the finite dimensional and infinite dimensional projections of the
terms dependent only upon χ(t) in the ansatz. Also, GFD and Gθ represent the interaction
terms in the finite dimensional between R and χ, as given by the terms ErrorA, Errorα,
Errorβ, Error θ from Appendix A of [18]. The term FR is the interaction term in the infinite
dimensional evolution, as it is in Appendix A of [18]. In particular, the evolution equations
for ~η are similar to those for the finite dimensional linearization (δα, δβ, δA) in (4.5a) but
now with an additional forcing term given by GFD. See Appendix A of [18] for full details.

The estimates∣∣∣ ~FFD(χ∗ + ~η)− ~FFD(χ∗)−DχFFD(χ∗)~η
∣∣∣ = O

(
Ã|~η|2 + |~η|3

)
are derived in [18]. We decompose R = R̃+w, where R̃ the leading order part of R, driven
by the periodic solution χ∗(t) as defined in (2.4), and w is a correction. Introduce, M̃(t),
a fundamental solution matrix for the system of ODEs with time-periodic coefficients:

∂tη = DχF (χ∗(t)) η.

Then, we are able to study the following system of integral equations for η(t), w(x, t), θ(t):

~η(t) =

∫ t

0

M̃(t)M̃−1(s)

×
[
~FFD(χ∗ + η)− ~FFD(χ∗)−Dχ

~FFD(χ∗)~η + ~GFD(χ∗, ~η;R, R̄)
]
ds,

w(x, t) =

∫ t

0

eiH(t−s)−iΩ0(t−s)+i
∫ t
s (Ã2+3α̃2+β̃2)(s′)ds′

× Pc
[
(Fb(χ∗ + ~η)− Fb(χ∗)) + FR(χ∗, ~η;R, R̄)

]
ds,

θ = θ0 +

∫ t

0

[
−Ω0 + A2 + 3α2 + β2 +Gθ(R, R̄;χ∗, ~η)

]
ds.
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We view a solution, (~η, w), of this system of integral equations as fixed point of a map-
ping M:

(4.12) (~η, w) =M(~η, w).

Given the bounds proven above in the proof of Theorem 2.1,M is a contraction map in
a particular Banach space in both x and t designed to optimally measure the dynamics of
both η and w. To that end, we recall the Strichartz space

LptW
k,q
x = Lp([0, T ∗];W k.q(R)),

where 2
p

+ 1
q

= 1
2

and T ∗ is given in Theorem 2.1. Following [18], we define the space

X(I) = X([0, T∗(σ)])

=
{

(~η, w) : η ∈ L∞t ([0, T∗(σ)]), w ∈ L∞t ([0, T∗(σ)];H1
x) ∩ L4

t ([0, T∗(σ)];L∞x )
}

equipped with the natural norm

‖(~η, w)‖X(I) = ‖~η‖L∞t (I) + ‖w‖L4
t (I;L

∞
x ) + ‖w‖L∞t (I;H1

x),

where I = [0, T∗(σ)].

We define Bσ(I) ⊂ X(I) such that (~η,R) ∈ Bσ(I) if and only if

‖(~η, w)‖X(I) ≤ σ
1
2

+δ1 ,

where δ1 > 0 must be chosen in the course of the analysis.

Then the following proposition makes the desired contraction mapping precise.

Proposition 4.3. The mapping M : X(I)→ X(I), defined in (4.12), has the properties

(1) M : Bσ(I)→ Bσ(I).
(2) There exists κ < 1 such that given (~ηj, wj) ∈ Bσ(I) for j = 1, 2,

d(M(~η1, w1),M(~η2, w2)) ≤ κ d((~η1, w1), (~η2, w2)).

Thus, there exists a unique solution (~η, w) in Bσ(I).

The main result then follows by applying the asymptotic analysis from Section 5 of [18]
to prove for example bounds of the form

‖~η‖L∞t =
∥∥∥∫ t

0

M(t)M−1(s)
[
~FFD(χ∗ + ~η)− ~FFD(χ∗)−Dχ∗

~FFD(χ∗)~η

+ ~GFD(χ∗ + ~η;R, R̄)
]
ds
∥∥∥
L∞

and

‖w‖L∞t H1
x∩L4

tL
∞
x

=
∥∥∥∫ t

0

eiH(t−s)eiΩ0(t−s)ei
∫ t
s (Ã2+3α̃2+β̃2)(s′)ds′

× Pc
[
(Fb(χ∗ + ~η)− Fb(χ∗)) + FR(χ∗, ~η;R, R̄)

]
ds
∥∥∥
L∞H1∩L4L∞

,
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the proofs of which rely heavily upon the bounds presented in Sections 4.1 and 4.2 above.

5. Discussion, Further Problems, and a Remark

We consider NLS/GP with a symmetric double well potential having sufficiently sepa-
rated wells. We have shown that there are periodic solutions of NLS/GP which, on a long
time scale, shadow periodic orbits of the finite dimensional ODE model both inside and
outside the separatrix. An obvious question is whether similar behavior can be shown in
systems with multiple potential wells. It is shown in [10, 11] that periodic orbits and a
class of quasi-periodic orbits arise as Hamiltonian Hopf bifurcation. Work is underway to
show that these periodic orbits are shadowed in the full PDE model.

Remark 5.1. The extension of the proof of [18] to the more general class of periodic
orbits considered here was facilitated by a closed-form solution of the reduced system. It
is instructive to consider how this was used:

(1) Bounds on the solution’s period are needed in order to obtain bounds on a Duhamel
operator in the proof of [18], Page 21, Equation (4.4). The necessary bounds follow
from the explicit solution. In the case where there is no explicit solution, for trajec-
tories near the separatrix the dominant contribution to the period can be computed
by an asymptotic analysis near the saddle fixed point at the origin.

(2) In Lemma 4.1, the symmetries of the exact solution are used to show that the
monodromy matrix has an eigenvalue λ = 1 of algebraic multiplicity three and
geometric multiplicity two. This information is obtainable from the symmetry of
the equation and does not require the exact solution.

(3) The exact solution simplifies the estimate of the bounds of the various terms in
the fundamental solution operator, equations (4.9)-(4.11). In the absence of exact
formulas, these bounds require terms beyond first-order in the expansion of M(t).
An alternate way to determine them is to first put the Hamiltonian system (1.10)
into normal form, which agrees the Hamiltonian of the Duffing oscillator to leading
order. This is demonstrated in the Appendix using the method of Lie Transforms.
Truncation in the normal form transformation introduces a secondary source of
error that must be controlled carefully in any estimates.
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Appendix A. Outline of approach using Hamiltonian normal forms

A key ingredient in the proof of shadowing is prove bounds on the fundamental solution
matrix operator for a reduced system. While these can be studied via the explicit solutions
of the reduced system arising for double wells, more generally explicit solutions are unavail-
able and therefore a different approach must be taken. For example, in the case where V (x)
is a triple well potential, the orbits can only be calculated via perturbative methods [10, 11].
In this appendix we give a brief sketch of the general normal form method and the results
of its implementation for (1.10), in the regime where σ is a small parameter; see [19] for
details.

Consider a general Hamiltonian of the form

(A.1) H(Q,P ) = H0(Q,P ) + σf(Q,P ;σ),

where σ � 1, H0 is quadratic (so that the associated differential equations are linear
and thus integrable) and f has a finite or convergent power series. A normal form for
the Hamiltonian (A.1) is an equivalent but simpler Hamiltonian obtainable by a suitable
canonical change of variables (Q,P ) = Φ(q, p) = (q, p) + . . . under which new Hamiltonian
K(q, p) = H(Φ(q, p)) = H0(q, p) + σg(q, p;σ). Roughly, the function g(q, p;σ) should
contain as few terms as possible at each order in perturbation theory. It is well-known [19,
§10.4] that for a Hamiltonian like (1.11) with leading-order part H0 = Ω10

2
P 2, the normal

form Hamiltonian is

K(q, p) =
Ω10

2
p2 + σg(q;σ).

That is, the normal form equation is separable, with p-dependent kinetic and q-dependent
potential energy.

Using perturbative technique based on the Lie transform, we can calculate the change
of coordinates and the transformed Hamiltonian to arbitrary order using Mathematica:

α = Q =

(
1 +

q2

3Ω10

+
q4

30Ω2
10

+
q6

630Ω3
10

+O
(
q8
))

q;

β = P =

(
1− q2

Ω10

+
5q4

6Ω2
10

− 61q6

90Ω3
10

+O
(
q8
))

p;

K(q, p) =
Ω10

2
p2 − σ

2
q2 + q4 +

−σq4 + 4q6

3Ω10

+
4 (−q6σ + 9q8)

45Ω2
10

+O
(
σq8, q10

)
.

The three leading terms of K(q, p) are equivalent to the Duffing Hamiltonian (1.13),
which has well-known solutions involving Jacobi elliptic functions [1]. These solutions then
form the leading order parts of Poincaré-Lindstedt approximations to true periodic orbits
of K(q, p), which can be computed to arbitrary order using computer algebra.

While the asymptotic series defining a normal form change of variables does not generally
converge, there exist, in some cases, useful error estimates for finite truncations of the series,
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for example Giorgilli and Galgani [9], who prove an estimate of Nekhoroshev type [21].
By truncating the series to order r, they show that the error due to the normal form
approximation can be controlled to within O(sigma) for times of O(sigma−r). Further,
as σ, the order r can be chosen in order to control the error over exponentially long time
scales in 1/σ. Using the normal form approximation will introduces approximations into the
fundamental solution operator of the finite-dimensional system, which must be controlled
in order to verify the bounds (2.1) and (2.2) which are discussed in Section 4. The time
scales on which these estimates are proven must be reconciled with the time scales on which
the normal form approximation is valid.
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