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Abstract. We consider a quasilinear Schrödinger equation on R for which the dispersive effects
degenerate when the solution vanishes. We first prove local well-posedness for sufficiently smooth,
spatially localized, degenerate initial data. As a corollary in the focusing case we obtain a short
time stability result for the energy-minimizing compact breather.

1. Introduction

We consider solutions u : Rt × Rx → C of the quasilinear Schrödinger equation

(QLS)

{
iut = ū(uux)x + µ|u|2u,
u(0, x) = u0(x),

where µ ∈ {−1, 0, 1}. Our interest in the model (QLS) originated with the article [6], where the
authors reduce the study of norm growth for the defocusing NLS on T2 to a discrete toy model.
The equation (QLS) (with µ = 1) then arises as a formal continuum limit of this toy model (see [7]).

The equation (QLS) is the Hamiltonian flow of

H[u] :=

∫
|uux|2 dx−

µ

2

∫
|u|4 dx,

with respect to the Poisson structure

{F,H} := i

∫
δF

δu

δH

δū
− δF

δū

δH

δu
dx.

Solutions of (QLS) also (formally) conserve the mass

M [u] :=

∫
|u|2 dx,

and momentum

P [u] := Im

∫
uūx dx.

In this article we are primarily interested in the local well-posedness of (QLS). Taking w = du,
the linearization of the equation (QLS) about a solution u may be written as

i(wt + vwx) = (ρwx)x + lower order,

where the density ρ and velocity1 v are defined by

(1.1) ρ := |u|2, v := 2 Im(uūx).

J.L.M. was supported in part by U.S. NSF Grants DMS–1312874 and DMS–1352353.
1Strictly speaking, v is twice the momentum density. However, a peculiarity of (QLS) is that the mass ρ is

transported by v, which motivates us to refer to it as the velocity.
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In particular, the linearized problem is dispersive whenever ρ(t, x) & 1. On sufficiently short time
intervals we expect that ρ(t, x) ≈ ρ(0, x) = |u0(x)|2, so the dispersive nature of the problem is
determined by the initial data. If the initial data u0 is non-degenerate, i.e. |u0(x)| & 1, local
well-posedness then follows from e.g. [30,38,39]. Unfortunately, these techniques break down when
u0 is allowed to degenerate.

We will focus on the case that the initial data u0 is smooth and non-zero on the interval I :=
(−x0, x0) ⊂ R and supported on the closed interval Ī = [−x0, x0], with sufficient decay at the
endpoints to ensure that

(1.2)
1

|u0|
6∈ L1

(
(−x0, 0)

)
∪ L1

(
(0, x0)

)
.

A particular example to keep in mind is the case that |u0| has asymptotic behavior

(1.3) |u0(x)| ∼ c± dist(x,±x0)1+α± as x→ (±x0)∓,

for positive constants c± > 0 and non-negative constants α± ≥ 0. We refer to the case α± = 0
as linear endpoint decay and α± > 0 as sublinear2 endpoint decay. Heuristically, we expect linear
endpoint decay to be sharp (see the discussion in [13] for example). Precisely, we expect that linear
and sublinear endpoint decay will lead to local well-posedness in suitable spaces, whereas superlinear
(α± < 0) endpoint decay will lead to ill-posedness in any reasonable space of distributions.

For sublinear endpoint decay one may obtain local well-posedness using polynomially weighted
spaces as in [13]. Thus, our main concern in this article will be the problem of linear endpoint
decay: the sharp decay rate we expect to be well-posed in any reasonable sense. Our motivation
for considering data satisfying conditions of this type is due to the following result from [14]:

Theorem 1.1. [14] If µ = 1 there exists a unique (up to translation) non-negative minimizer
φ = φω of the Hamiltonian H[φ] for fixed mass M [φ] =

√
2πω > 0 given by

(1.4) φω(x) :=
√

2ω cos
(
x√
2

)
1I(x),

where the interval I = (− π√
2
, π√

2
).

One may construct compact breather solutions of (QLS) from the minimizer φω for any θ ∈ R
by

(1.5) u(t, x) = e−itω+iθφω(x).

Compact breathers and compactons (the corresponding analogue for KdV-type equations) are an
important feature of (focusing) degenerate dispersive equations. There has been a substantial
volume of work on the existence and properties of compact solutions of this type for a variety of
problems, in particular the work of Rosenau and collaborators, e.g. [41–51, 55–57]. We refer the
reader to the primer [52] for a review of the current state of the art.

The main result of this article is local well-posedness of the equation (QLS) in a space that
contains the solution (1.5):

Theorem 1.2 (Local well-posedness of (QLS)). Let x0 > 0 and I = (−x0, x0). Then there exists a
set S ⊂ L2 of functions that are non-zero and smooth on I, supported on Ī and satisfy (1.2) so that
for any u0 ∈ S there exists a time T > 0 and a unique u ∈ C([0, T ];L2) that satisfies (QLS) in the
sense of distributions. For all t ∈ [0, T ] the solution u(t) is non-zero and smooth on I, supported

2Since we are considering compact regions, our notion of sublinear and superlinear is reversed from behavior
considered as x→ ∞.
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on Ī, and conserves its mass, momentum and energy. Further, for all t ∈ [0, T ] the solution map
u0 → u(t) is Lipschitz continuous with respect to the L2-topology.

As far as we are aware, this is the first proof of local well-posedness for a degenerate quasilinear
Schrödinger equation. A key innovation in this article is that, unlike in the case of the KdV equation
considered in [13], we are able to handle the critical (linear) endpoint decay rate.

Critical endpoint decay rates were previously considered in the setting of the shoreline problem
for a model of shallow water waves in [36]. In this case, the finite speed of propagation allows the
authors to work with a finite number of (weighted) derivatives, as in the subcritical endpoint decay
rates considered in [13]. In the Schrödinger case, where the speed of propagation is infinite, we are
no longer able to work with a finite number of weighted derivatives, which significantly complicates
the analysis.

While preparing this article, we learned of a complementary preprint by Jeong and Oh [27]
in which they prove ill-posedness in standard Sobolev spaces of a related quasilinear Schrödinger
equation appearing in [22, 23], though the techniques apply as well to show the ill-posedness of
(QLS) in standard Sobolev spaces. The same authors are also working to develop an alternative
approach to local well-posedess using function spaces suited to the degeneracy of the initial data [26].
Ill-posedness of related degenerate models was also considered in [2, 28].

The set S, which will be described in Section 2, contains the compact breather (1.5) and rea-
sonable perturbations thereof (see Proposition 2.6). This motivates us to consider its stability. As
a corollary to Theorems 1.1, 1.2, we may apply the method of [5] to obtain the following stability
result, which we prove in Section 7:

Theorem 1.3 (Stability of the energy-minimizing breather). Let µ = 1, ω > 0 and ε > 0. Then
there exists some δ > 0 so that for any u0 ∈ S satisfying

(1.6) inf
θ,h∈R

‖u0(·+ h)2 − e2iθφ2
ω‖L1∩Ḣ1 ≤ δ,

we have the estimate

(1.7) sup
t∈[0,T ]

(
inf
θ,h∈R

‖u(t, ·+ h)2 − e−2itω+2iθφ2
ω‖L1∩Ḣ1

)
≤ ε,

where T > 0 is the lifespan of the solution u obtained in Theorem 1.2.

Remark 1.4. In [14], the authors also construct traveling compactons as solutions to (QLS), however
these states arise at the expense of a highly singular phase and hence significantly complicate the
regularity and boundary conditions considered. As a result, at present we leave stability of these
states as an open problem.

Outline of the proof. In our previous work [13] on the KdV analogue of (QLS), we use the
hydrodynamic formulation of the problem (see (1.8) below) to switch to Lagrangian coordinates,
which has the effect of freezing the degeneracy at the initial time t = 0. We then make a change
of independent variable to flatten the degeneracy and reduce the problem to a non-degenerate
quasilinear equation, which can be solved using the energy method. These changes of variable were
inspired by similar approaches in related degenerate problems, e.g. [9, 10,15,16,25,32–37].

While a similar approach formed the basis of our original investigation of (QLS), a key difficulty
was encountered due to the need to work in spaces of analytic functions. If the initial data has linear
endpoint decay, after changing the independent variable, we are required to propagate exponential
decay of the initial data to the solution. Even in the case of a constant coefficient linear Schrödinger
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equation, propagation of exponential decay of the data requires controlling the solution in spaces of
analytic functions. However, as the approach of [13] requires working with a quasilinear Schrödinger
equation, one must bound the solution in spaces of exponentially weighted analytic data adapted
to a variable metric.

To circumvent this difficulty, we introduce two key new ideas in this article. The first is a change
of independent variable that prioritizes flattening the degeneracy and reduces (QLS) to a derivative
semilinear Schrödinger equation. This significantly simplifies the problem of controlling our solution
in spaces of analytic functions. The second is to couple (QLS) with an equation for w := ūux

|u| , which

controls the decay of the solution u. Indeed, by controlling this function pointwise we will be able
to work in translation-invariant (with respect to the new independent variable) spaces. This not
only simplifies the nonlinear estimates considerably, but also allows us to replace the asymptotic
assumption (1.3), with the far less prescriptive assumption (1.2).

Our motivation for considering the function w is most readily understood by writing the equation
(QLS) in the form

iut = (|u|∂x)2u+ i(Imw)(|u|∂x)u+ µ|u|2u.
After making our change of independent variable, which maps |u|∂x 7→ ∂y, controlling the sub-
principle term requires controlling Imw. To do this, we must consider the complex-valued function
w rather than just its imaginary part. Indeed, we may compute that w satisfies the Schrödinger
equation,

iwt = (|u|∂x)2w + lower order terms.

The variable w also arises naturally from the hydrodynamic formulation of (QLS)

(1.8)

{
ρt + (vρ)x = 0,

vt + vvx + (v2 − ρρxx + 1
2ρ

2
x − µρ2)x = 0,

where ρ, v are defined as in (1.1). We may then compute that

w =
ρx

2
√
ρ
− i v

2
√
ρ
.

Unfortunately, at least in the case of linear endpoint decay, the semilinear equation we obtain for
w in our new coordinate system fails the Takeuchi-Mizohata condition [40,53] for well-posedness of
linear Schrödinger equations in Sobolev spaces (see also [1–3,24]). To address this issue, as we have
already alluded to, we work in spaces of analytic functions. By allowing the radius of analyticity
to shrink linearly in time, we obtain a global smoothing effect that is sufficient to control the
problematic terms. We remark that similar analytic spaces and estimates have previously appeared
in work on semilinear Schrödinger equations, e.g. [4, 11,17–21,29,31].

Another difficulty we encounter with our semilinear equations for u,w is a transport term with
unbounded velocity. This prevents us from using a contraction mapping argument, so instead our
proof of existence relies on an energy method: we construct solutions as weak limits of regularized
equations. We remark that the fact that we are unable to use a contraction mapping argument is
unsurprising, given that the original equation (QLS) is quasilinear. This unbounded velocity term
also prevents us from comparing two solutions in our new coordinate system. To prove uniqueness
and continuity we instead use the original equation (QLS).

While the function w significantly simplifies some of the analysis, it has the disadvantage that
we do not expect it will decay at spatial infinity in our new coordinates (at least in the case of
linear endpoint decay). To handle this, we bound low frequencies in L∞ and high frequencies in
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Sobolev spaces. This enables us to treat non-decaying data, while still using energy estimates to
control the high frequency contributions.

The remainder of the paper is structured as follows: In Section 2 we discuss the change of
variables and define the set S of initial data. We provide additional details for some of the more
involved computations appearing in this section in Appendix A. In Section 3 we prove several
preliminary estimates for our spaces of analytic functions. Our main nonlinear estimates are stated
in Proposition 3.6 but, as they are standard albeit technical, we delay the proof until Appendix B.

We begin our proof of existence of solutions to (QLS) with a priori estimates for model linear
equations in Section 4. We then apply these in Section 5 to obtain a solution of the semilinear
equations described above. Once we have solved the semilinear problems to obtain u,w in our new
coordinate system, it remains to verify that the solution we construct has sufficient regularity to
invert the change of coordinates and obtain a solution to the original equation (QLS). This is the
main task in Section 6, where we complete the proof of Theorem 1.2.

Finally, in Section 7 we prove our stability result, Theorem 1.3

Acknowledgement. This project was started as a collaboration with Pierre Germain, to whom
the authors are extremely grateful for many fruitful discussions and several invaluable contributions
towards understanding the structure of the problem. The authors also wish to thank Sung-Jin Oh
for several enlightening discussions about degenerate dispersive equations.

2. Reformulation of the problem

In this section we introduce the various changes of variable required to prove Theorem 1.2 and
define the set S of initial data.

2.1. Changes of variable. Motivated by the linearization of (QLS), we introduce the independent
variable

(2.1) y(t, x) =

∫ x

0

1

|u(t, ζ)|
dζ + c(t) for x ∈ I,

where c(t) is a real-valued, continuously differentiable function satisfying c(0) = 0. As we are
assuming u0 is non-zero on I as well as (1.2), the map x 7→ y(0, x) is readily seen to be a diffeomor-
phism from I onto R. The integrand is designed precisely to flatten the degeneracy, whereas the
time-dependent constant c(t) will be chosen shortly to provide a helpful cancellation. The freedom
to choose c(t) is due to the gauge-invariance of this change of variables: we have total freedom to
decide the value of y(t, 0).

Using this change of variable we define

(2.2) U(t, y(t, x)) := u(t, x) and W (t, y(t, x)) := w(t, x) =
ū(t, x)ux(t, x)

|u(t, x)|
.

The variable W will be used to control the decay of U and is related to U by the identity

(2.3) W =
ŪUy
|U |2

.

We denote the real and imaginary parts of W by

(2.4) α := ReW and β := ImW,
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and use the functions α, β to fix our gauge by taking c(t) to solve the equation

(2.5)

ct(t) = −β(t, c(t))− 3

∫ c(t)

0
α(t, ζ)β(t, ζ) dζ,

c(0) = 0,

so that the equation (QLS) can be written as

(2.6) i (Ut + bUy) = Uyy + 2iβUy + µ|U |2U,

where the real-valued coefficient

(2.7) b(t, y) := −3

∫ y

0
α(t, ζ)β(t, ζ) dζ

satisfies

yt(t, x) = b(t, y(t, x))− β(t, y(t, x)).

As discussed in the introduction, in order to solve the equation (2.6) we will also need to control
W , which we compute satisfies the equation

(2.8) i (Wt + bWy) = Wyy + (2W 2 − 1
2 |W |

2)y + 3iαβW + 2µ|U |2α.

For the reader’s convenience, we outline these computations in Appendix A.

We conclude our discussion of the change of variables by performing these computations in the
special case of the compact breather:

Example 2.1 (The compact breather in y-coordinates). Let θ ∈ R and u(t, x) = e−itω+iθφω(x) be
as in (1.5). Then, for x ∈ I = (− π√

2
, π√

2
) we have

y(t, x) =

∫ x

0

1
√

2ω cos( ζ√
2
)
dζ = 1√

ω
ln
(

tan
(
x√
2

)
+ sec

(
x√
2

))
,

where we note that Imw = 0 and hence c ≡ 0. As a consequence, we have

U(t, y) = e−itω+iθ
√

2ω sech(
√
ωy),

W (t, y) = −
√
ω tanh(

√
ωy).

2.2. Function spaces. It is natural to bound the solution U in Sobolev-type spaces. Given s ≥ 0
we define the Sobolev space Hs with norm

‖f‖2Hs :=

∫
〈ξ〉2s|f̂(ξ)|2 dξ,

where 〈ξ〉 =
√

1 + |ξ|2, and the Fourier transform

f̂(ξ) := 1√
2π

∫
f(x)e−ixξ dx.

In the case of linear endpoint decay, it is clear from Example 2.1 that we should not expect W
to decay as |y| → ∞. This motivates us to introduce the space Zs with norm

‖f‖Zs := ‖f‖L∞ + ‖fy‖
Hs− 1

2
.
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In order to control the subprinciple terms in the equations for U and W we will need our solution
to be analytic. Given a function m : R→ C we define the Fourier multiplier

m(Dy)f(x) := 1√
2π

∫
m(ξ)f̂(ξ)eixξ dξ.

Given τ > 0 and a Banach space X of tempered distributions on R with norm ‖ · ‖X we define the
subspace AXτ of X to consist of f ∈ X with finite norm

‖f‖AXτ := ‖(eτDyf, e−τDyf)‖X ,

where, for concreteness, we make the convention that if g = (g1, g2, . . . , gn) then

‖g‖X =

n∑
j=1

‖gj‖X .

In particular, the space AHs
τ coincides with the definition of the analytic Gevrey spaces appearing

in [12,29].

Before turning to the definition of the set S of initial data and stating the existence part of
Theorem 1.2 in U,W coordinates, it will be useful to introduce a little more notation.

Given T > 0 and a Banach space X of tempered distributions we define the space C([0, T ];X) to
consist of continuous functions f : [0, T ]→ X and be endowed with the supremum norm. Due to the
presence of a complex transport term in the equation for W , we will need the radius of analyticity τ
to be time-dependent. As a consequence, given T > 0 and a continuous function τ : [0, T ]→ (0,∞)
we say that f ∈ C([0, T ];AXτ ) if the vector-valued function (eτDyf, e−τDyf) ∈ C([0, T ];X).

In a similar fashion, we say that f ∈ Lp((0, T );AXτ ) if (eτDyf, e−τDyf) ∈ Lp((0, T );X) and
denote

‖f‖p
LpTX

=

∫ T

0
‖f(t)‖pX dt, ‖f‖p

LpTAXτ
=

∫ T

0
‖f(t)‖pAXτ dt,

with the obvious modification when p =∞.

Finally, if X has a predual then we write f ∈ Cw([0, T ];AXτ ) if f ∈ L∞((0, T );AXτ ) and

(eτDyf, e−τDyf)(t)
∗
⇀ (eτDyf, e−τDyf)(s) in X as t→ s for t, s ∈ [0, T ].

2.3. Existence for U,W . In order to prove existence for (QLS), we will prove existence of a
solution to the equation (2.6). Here it will be useful to treat the equations (2.6) and (2.8) as a
system, where the initial data is not necessarily related via the identity (2.3). We then have the
following theorem:

Theorem 2.2. Let 0 < s ≤ 1
2 and 0 < τ0 ≤ 1. Then, given any

U0 ∈ AHs
τ0 and W0 ∈ AZsτ0 ,

there exists some T > 0, a non-increasing, continuously differentiable function τ : [0, T ] → (0,∞)
so that τ(0) = τ0, and a solution U ∈ Cw([0, T ];AHs

τ ), W ∈ Cw([0, T ];AZsτ ) of the system (2.6),
(2.8) with initial data U(0) = U0 and W (0) = W0.

Further, we have the estimates

‖U‖L∞T AHs
τ
. ‖U0‖AHs

τ0
,(2.9)

‖W‖L∞T AZsτ . ‖U0‖AHs
τ0

+ ‖W0‖AZsτ0 ,(2.10)
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and the lower bound

(2.11) T &
1

‖U0‖2AHs
τ0

+ ‖W0‖2AZsτ0
.

Remark 2.3. The solutions we construct will be obtained by taking a weak limit of a regularized
system of equations. Thus, a priori, our solution is a distributional solution of (2.6), (2.8). However,
for any n ≥ 0 the space of bounded Cn functions is (locally compactly) embedded in both AHs

τ

and AZsτ , so the corresponding U,W are smooth classical solutions of the equations (2.6), (2.8).

Remark 2.4. The assumptions that 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 are solely for technical convenience

and can be replaced by s > 0 and τ0 > 0 by making suitable modifications to the various estimates.

2.4. The initial data set S. From the statement of Theorem 2.2 we obtain the following definition
for the data set S:

Definition 2.5 (The data set S). Let S be the set of u0 ∈ L2 that are non-zero and smooth on I,
supported on Ī, and satisfy (1.2), so that if we define

y0(x) =

∫ x

0

1

|u0(ζ)|
dζ and U0(y0(x)) := u0(x),

then there exists some 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 so that

U0 ∈ AHs
τ0 and

Ū0U0y

|U0|2
∈ AZsτ0 .

Due to the implicit nature of the definition of S, it is not immediately clear what a typical
element looks like. As a consequence, we conclude this section with an explicit construction of an
admissible perturbation of the compact breather solution to which Theorem 1.3 may be applied.

Proposition 2.6 (An admissible perturbation of the compact breather). Let µ = 1, ω > 0 and the
interval I = (− π√

2
, π√

2
). Let M,C ≥ 1 and f : I → R be a smooth function so that for any n ≥ 0

we have

(2.12) |∂nxf(x)| ≤MCn.

Then,

(2.13) u0 = eifφω ∈ S.

Proof. First, we observe that if there exist constants K,B > 0 so that for all n ≥ 0 we have

(2.14) 1
n!‖∂

n
y f‖L2 ≤ KBn,

then taking 0 < τ0 <
1
B we have f ∈ AHs

τ0 for any s ∈ R. Similarly, if

(2.15) 1
n!‖∂

n
y f‖L∞ ≤ KBn,

then taking 0 < τ0 <
1
B we have f ∈ AL∞τ0 .

Second, we observe that if we have the pointwise bound
1
n! |∂

n
y fj | ≤ KjB

n
j ,

for constants Bj > 0 and functions Kj = Kj(y) > 0, then

1
n! |∂

n
y (f1f2)| ≤ (n+ 1)K1K2 max{Bn

1 , B
n
2 },(2.16)

1
n! |∂

n
y (f1f2f3)| ≤ (n+2)(n+1)

2 K1K2K3 max{Bn
1 , B

n
2 , B

n
3 }.(2.17)
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By induction on n, using that sech′′(y) = sech y − 3 sech3 y and the inequality (2.17), we may then
bound

(2.18) 1
n! |∂

n
y sech y| ≤ 2n sech y,

and similarly, using that tanh′′(y) = 2 tanh3 y − 2 tanh y,

1
n! |∂

n
y tanh y| ≤ 2n.

Next, we compute that

W0(y) = −
√
ω tanh(

√
ωy) + iF (y)

√
2ω sech(

√
ωy),

where

F (y) = f ′
(√

2 arctan
(
sinh

(√
ωy
)))

.

Using that
d

dy

(√
2 arctan

(
sinh

(√
ωy
)))

= |U0(y)| =
√

2ω sech(
√
ωy),

we may apply the Faà di Bruno formula to obtain

∂nyF =
n∑
k=1

∂k+1
x f

(√
2 arctan

(
sinh

(√
ωy
)))
·Bn,k

(
|U0|, ∂y|U0|, . . . , ∂n−ky |U0|

)
,

where Bn,k is the partial Bell polynomial. Using the estimate (2.18), the hypothesis (2.12), and
properties of the Bell polynomials (see e.g. [8]), we may bound

1
n! |∂

n
yF | ≤MCBn where B = 2

√
ωmax

{
C,
√

2ω
}
.

Applying (2.14), (2.15), and (2.16), we may then choose 0 < τ0 � 1 sufficiently small to ensure
that W0 ∈ AZsτ for any s ∈ R. Finally, we observe that U0y = U0W0 and hence we may apply
(2.14) and (2.16) to conclude that U0 ∈ AHs

τ0 for any s ∈ R. �

Remark 2.7. We may use the numerical methods presented in [14] to explore perturbations of
the compacton of the form in Proposition 2.6. In Figure 1, we present a time sequence of plots
for solutions to (QLS) of the form (2.13) demonstrating that numerical stability is observed in a
reasonable fashion on short time scales as the perturbation spreads towards the endpoints.

3. Some preliminary estimates

Given τ > 0 we define the Fourier multipliers

Cτ := cosh(τDy), Sτ := i sinh(τDy), Tτ := i tanh(Dy).

We observe that these multipliers map real-valued functions to real-valued functions and that Cτ is
symmetric whereas Sτ , Tτ are skew-symmetric. Further, we have the product rules

(3.1) Cτ (fg) = Cτf · Cτg − Sτf · Sτg, Sτ (fg) = Sτf · Cτg + Cτf · Sτg.

Using Plancherel’s Theorem, we have the following lemma:

Lemma 3.1 (An equivalent norm). We have the estimate

(3.2) ‖f‖AHs
τ
≈ ‖Cτf‖Hs ,

uniformly in s, τ .
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Figure 1. (Top) Time slices of the absolute value of numerical solutions to (QLS)
at t = 0, T/4, T/2, 3T/4, T with initial data of the form (2.13). Here, we have taken

28 spatial grid points, T = .5, f = .1e−20x2 . (Bottom) Tracking the conserved Mass
and Energy curves for the simulation.

Proof. Using that Cτ = 1
2e
τDy + 1

2e
−τDy we have

‖Cτf‖Hs ≤ 1
2‖f‖AHs

τ
.

Conversely, we observe that e±τDy = (1∓ iTτ )Cτ and by Plancherel’s Theorem we have

‖(1∓ iTτ )‖Hs→Hs ≤ ‖1± tanh(·)‖L∞ ≤ 2.

Consequently, we may bound

‖f‖AHs ≤ 4‖Cτf‖Hs .

�

We take ϕ ∈ C∞c to be an even function, identically 1 on [−1, 1] and supported in (−2, 2). We
define the Littlewood-Paley projection P0 = ϕ(Dy) and for j ≥ 1 we define Pj = ϕ(2−jDy) −
ϕ(21−jDy). We then have the following Sobolev-type estimate:

Lemma 3.2. If s > 0 we have the estimate

(3.3) ‖f‖L∞ . ‖P0f‖L∞ + ‖fy‖
Hs− 1

2
,
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and identical bounds hold with L∞, Hs− 1
2 replaced by AL∞τ , H

s− 1
2

τ , uniformly in τ .

Proof. We decompose by frequency and then apply Bernstein’s inequality to bound

‖f‖L∞ ≤
∞∑
j=0

‖Pjf‖L∞ . ‖P0f‖L∞ +
∞∑
j=1

2−sj‖Pjfy‖
Hs− 1

2
. ‖P0f‖L∞ + ‖fy‖

Hs− 1
2
.

Replacing f by e±τDyf , we obtain the corresponding bound with L∞, Hs− 1
2 replaced by AL∞τ ,

AH
s− 1

2
τ respectively. �

Lemma 3.3. For any τ > 0 and 1 ≤ p ≤ ∞ we have the estimate

(3.4) ‖C−1
τ ‖Lp→Lp ≤ 1.

Proof. We compute that the kernel of C−1
τ is given by K(y) = 1

2τ sech(πy2τ ) and hence ‖K‖L1
y

= 1.

The estimate (3.4) then follows from Young’s inequality. �

We will also require the following technical estimate:

Lemma 3.4. We have the estimate

(3.5) ‖Cτf − f‖L∞ . τ‖fy‖AL∞τ ,
uniformly for 0 < τ ≤ 1.

Proof. Let J = b− ln τc. For high frequencies we bound

‖P>JCτf‖L∞ .
∑
j>J

2−j‖PjCτfy‖L∞ . τ‖fy‖AL∞τ .

Further, from the estimate (3.4) we have

‖P>Jf‖L∞ . ‖P>JCτf‖L∞ . τ‖fy‖AL∞τ .

For low frequencies, we observe that the kernel of the operator (C−1
τ − 1)P≤J is K ′(y) where

K(y) =
1

2π

∫
sech(τξ)− 1

iξ
ϕ(2−Jξ)eiyξ dξ

is a Schwartz function satisfying ‖K‖L1 . τ . Consequently, we may apply Young’s inequality to
obtain the estimate

‖P≤JCτf − P≤Jf‖L∞ . τ‖Cτfy‖L∞ . τ‖fy‖AL∞τ .
Combining these bounds we obtain the estimate (3.5). �

Our linear estimates will take advantage of the smoothing effect gained from allowing the radius
of analyticity to shrink. Observing that

(3.6)
d

dt
Cτ = −τ̇ ∂ySτ ,

we are motivated to prove the following:

Lemma 3.5. We have the estimate

(3.7) ‖Cτf‖2
H

1
2
. −Re 〈∂ySτf, Cτf〉+ 1

τ ‖Cτf‖
2
L2 ,

uniformly for 0 < τ ≤ 1.
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Proof. Using Plancherel’s Theorem we have

−Re 〈∂ySτf, Cτf〉 =

∫
ξ tanh(τξ)| cosh(τξ)f̂(ξ)|2 dξ.

The estimate (3.7) then follows from the the fact that

〈ξ〉 . ξ tanh(τξ) + 1
τ ,

where the constant can be chosen independently of τ . �

We define the low-high and high-high paraproduct operators to be

Tfg :=
∑
j≥4

P≤j−4f · Pjg, Π[f, g] := fg −Tfg −Tgf.

We then have the following nonlinear estimates, the proof of which is delayed to Appendix B:

Proposition 3.6. We have the following estimates:

(1) Symmetric product bounds. If s ≥ 0 then

‖fgy‖Hs . ‖f‖L∞‖gy‖Hs + ‖fy‖Hs‖g‖L∞ ,(3.8)

‖fg‖Zs . ‖f‖L∞‖g‖Zs + ‖f‖Zs‖g‖L∞ ,(3.9)

(2) Asymmetric product bounds. If s ∈ R then

‖Tfgy‖
Hs− 1

2
. ‖f‖L∞‖gy‖

Hs− 1
2
,(3.10)

if 0 ≤ s ≤ 1 then

‖fgy −Tfgy‖Hs . ‖f‖W 1,∞‖g‖Hs ,(3.11)

and if 0 < s ≤ 1
2 then

‖fgy‖
Hs− 1

2
. ‖f‖Z0‖gy‖

Hs− 1
2
.(3.12)

(3) Trilinear bounds. If s ≥ 0 then

‖fgh‖Hs . ‖f‖
Hs+1

2
‖g‖

H
1
2
‖h‖L2 + ‖f‖

H
1
2
‖g‖L2‖h‖

Hs+1
2

+ ‖f‖L2‖g‖
Hs+1

2
‖h‖

H
1
2
,(3.13)

‖fgh‖Hs . ‖f‖
Hs+1

2
‖g‖L2‖h‖L∞ + ‖f‖L2‖g‖

Hs+1
2
‖h‖L∞ + ‖f‖L2‖g‖L2‖hy‖Hs .(3.14)

(4) Commutator bounds. If −1
2 < s ≤ 1 and j ≥ 4 then

‖[〈Dy〉s, f ]gy‖L2 . ‖fy‖Z0‖g‖Hs ,(3.15)

‖[P≤j , f ]gy‖L∞ . ‖fy‖L∞‖g‖L∞(3.16)

In all cases, identical bounds hold with Hs replaced by AHs
τ , etc., uniformly in τ .

4. Linear estimates

In this section we prove a priori estimates for model equations that will subsequently be applied
to obtain bounds for U and W .

We first consider estimates for solutions z : [0, T ]×R→ C of the (regularized) linear Schrödinger
equation

(4.1) i (zt + P≤j(bz≤j,y)) = P≤jz≤j,yy + f + g,
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where we write z≤j = P≤jz and assume that the coefficient b is real-valued (and not necessarily
defined by (2.7)). We then have the following proposition:

Proposition 4.1. Let −1
2 < s ≤ 1 and 0 < δ � 1 be a sufficiently small constant. Given

0 < τ0 ≤ 1, M > 0 and 0 < T ≤ δ
2M define

(4.2) τ(t) := τ0

(
1− M

δ t
)

for 0 ≤ t ≤ T.
Suppose that for almost every t ∈ (0, T ) the function b(t) ∈ L∞ satisfies

b(t, 0) = 0 and ‖by(t)‖AZ0
τ
≤M.(4.3)

Let z ∈ C([0, T ];AHs
τ ) and suppose that for almost every t ∈ (0, T ) we have zt, zyy ∈ AHs

τ and z
satisfies (4.1) with initial data z(0) = z0. Then we have the a priori estimate

(4.4) sup
t∈[0,T ]

‖z‖AHs
τ

+
√
Mτ0‖z‖

L2
TAH

s+1
2

τ

. ‖z0‖AHs
τ0

+ ‖f‖L1
TAH

s
τ

+ 1√
Mτ0
‖g‖

L2
TAH

s− 1
2

τ

,

where the implicit depends only on δ, s.

Proof. We first consider the case that s = 0 and j =∞, with the convention that P≤∞ = 1. Using
the product rule (3.1) and integration by parts we compute

(4.5)
d
dt

1
2‖Cτz‖

2
L2 − Mτ0

δ Re
〈
∂ySτz, Cτz

〉
= 1

2 Re
〈
Cτ by · Cτz, Cτz

〉
+ Re

〈
Sτ b · Sτzy, Cτz

〉
+ Im

〈
Cτf, Cτz

〉
+ Im

〈
Cτg, Cτz

〉
.

We remark that in order to justify the integration by parts we use (3.5) to bound

‖Cτ b‖L∞ . ‖b‖L∞ + τ‖by‖AL∞τ <∞
for a.e. t ∈ (0, T ). This is the only place in the proof we use that b is bounded and hence the
estimate (4.4) is independent of the size of ‖b‖L∞ .

For the smoothing term on LHS(4.5) we apply the estimate (3.7) to bound

Mτ0
δ ‖Cτz‖

2

H
1
2
. −Mτ0

δ Re
〈
∂ySτz, Cτz

〉
+ M

δ ‖Cτz‖
2
L2 ,

where we have used that τ ≈ τ0.

For the first term on RHS(4.5) we use the hypothesis (4.3) to bound∣∣〈Cτ by · Cτz, Cτz〉∣∣ ≤ ‖Cτ by‖L∞‖Cτz‖2L2 .M‖Cτz‖2L2 .

For the second term on RHS(4.5) we decompose using paraproducts to write

(4.6) Re
〈
Sτ b · Sτzy, Cτz

〉
= Re

〈
TSτ bSτzy, Cτz

〉
+ Re

〈
Sτ b · Sτzy −TSτ bSτzy, Cτz

〉
.

Further, we observe that applying Bernstein’s inequality with the fact that Sτ = 1
2(eτDy − e−τDy)

and τ ≈ τ0 we may bound

‖Sτ b‖L∞ . τ
(
‖P≤ 1

τ
by‖AL∞τ + ‖P> 1

τ
byy‖

AH
− 1

2
τ

)
. τ0M, ‖Sτ by‖L∞ . ‖by‖AL∞τ .M.

Consequently, the first term in (4.6) may be bounded by applying the estimate (3.10) with the fact
that ‖Tτ‖L2→L2 ≤ 1 (which follows from Plancherel’s Theorem) to obtain∣∣〈TSτ bSτzy, Cτz〉∣∣ . ‖Sτ b‖L∞‖Sτzy‖H− 1

2
‖Cτz‖

H
1
2
. τ0M‖Cτz‖2

H
1
2
,

whereas the second term in (4.6) may be bounded by applying (3.11) to obtain∣∣〈Sτ b · Sτzy −TSτ bSτzy, Cτz
〉∣∣ . ‖Sτ b‖W 1,∞‖Sτz‖L2‖Cτz‖L2 .M‖Cτz‖2L2 .
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For the remaining terms on RHS(4.5) we use duality to bound∣∣〈Cτf, Cτz〉∣∣ ≤ ‖Cτf‖L2‖Cτz‖L2 ,
∣∣〈Cτg, Cτz〉∣∣ ≤ ‖Cτg‖

H−
1
2
‖Cτz‖

H
1
2
.

Combining these estimates we obtain

∂t‖Cτz‖2L2 + Mτ0
δ ‖Cτz‖

2

H
1
2
. M

δ ‖Cτz‖
2
L2 + τ0M‖Cτz‖2

H
1
2

+ ‖Cτf‖L2‖Cτz‖L2 + ‖Cτg‖
H−

1
2
‖Cτz‖

H
1
2
.

Taking C > 0 to be a sufficiently large (absolute) constant to absorb the first term on the right
hand side, we then obtain

∂t

(
e−Ct

M
δ ‖Cτz‖2L2 + Mτ0

δ

∫ t

0
e−Cσ

M
δ ‖Cτz‖2

H
1
2
dσ,

)
. e−Ct

M
δ

(
τ0M‖Cτz‖2

H
1
2

+ ‖Cτf‖L2‖Cτz‖L2 + ‖Cτg‖
H−

1
2
‖Cτz‖

H
1
2

)
.

We then integrate, using that T M
δ ≤

1
2 , to obtain

sup
t∈[0,T ]

‖Cτz‖2L2 + Mτ0
δ ‖Cτz‖

2

L2
TH

1
2
. ‖Cτ0z0‖2L2 + τ0M‖Cτz‖2

L2
TH

1
2

+ ‖Cτf‖L1
TL

2‖Cτz‖L∞T L2 + ‖Cτg‖
L2
TH
− 1

2
‖Cτz‖

L2
TH

1
2

. ‖Cτ0z0‖2L2 + δ

(
sup
t∈[0,T ]

‖Cτz‖2L2 + Mτ0
δ ‖Cτz‖

2

L2
TH

1
2

)

+ 1
δ

(
‖Cτf‖2L1

TL
2 + δ

Mτ0
‖Cτg‖2

L2
TH
− 1

2

)
,

so provided 0 < δ � 1 is sufficiently small, independently of all other parameters, we may apply
the estimate (3.2) to obtain the estimate (4.4).

To handle the case s 6= 0 we simply apply 〈Dy〉s to the equation (4.1) and apply the commutator
estimate (3.15) to obtain

‖[〈Dy〉s, b]zy‖AL2
τ
. ‖by‖AZ0

τ
‖z‖AHs

τ
,

where we note that we have used that −1
2 < s ≤ 1. The estimate (4.4) then follows from possibly

shrinking the size of δ, depending on s. Finally, to handle the case that j <∞, we simply replace
z by z≤j on the right hand side of (4.5) and use that ‖z≤j‖AHs

τ
≤ ‖z‖AHs

τ
. �

Remark 4.2. The second term on LHS(4.4) provides a global smoothing estimate for the equation
(4.1). We remark that this estimate is distinct from the local smoothing effect of linear Schrödinger
operators, although we expect that solutions of (4.1) do indeed exhibit some form of local smoothing
(see for example [30,38]).

The second model we consider is the (regularized) transport-type equation

(4.7) zt + P≤j(bz≤j,y) = f.

This will be applied to bound the low frequencies of W .

In order to prove a priori bounds for (4.7), it will be useful to first record the following consequence
of the Picard-Lindelöff Theorem:
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Lemma 4.3. Let T > 0 and b : [0, T ]×R→ R be a continuous function so that for some constant
C ≥ 0 we have |b(t, 0)| ≤ C and by ∈ L∞([0, T ]× R). Then, for each y ∈ R, there exists a unique
solution Y ∈ C1([0, T ]) of the ODE

(4.8)

{
Yt(t, y) = b(t, Y (t, y))

Y (0, y) = y.

Further, for each y ∈ R the derivative Yy ∈ C1([0, T ]) and we have the estimate

(4.9) e
−T‖by‖L∞

T
L∞ ≤ ‖Yy‖L∞T L∞ ≤ e

T‖by‖L∞
T
L∞ ,

and hence the map y → Y is a diffeomorphism.

Proof. Our hypotheses ensure that b(t, y) is continuous in t and Lipschitz continuous in y, with uni-
form Lipschitz constant ‖by‖L∞T L∞ . For fixed y ∈ R, the Picard-Lidelöff Theorem then guarantees

local existence for (4.8). However, using the estimate

|b(t, Y (t, y)| ≤ C + ‖by‖L∞T L∞ |Y (t, y)|,

and Gronwall’s inequality, the solution can be extended to the entire time interval [0, T ]. It remains
to prove (4.9). However, this readily follows from the observation that

d

dt

(
log Yy(t, y)

)
= by(t, Y (t, y)).

�

We may then prove our main a priori estimate for solutions of (4.7):

Proposition 4.4. Let 0 < δ � 1 be a sufficiently small constant and j ≥ 8. Given 0 < τ0 ≤ 1,
M > 0 and 0 < T ≤ δ

2M , define τ ∈ C1([0, T ]) as in (4.2) and suppose that b : [0, T ] × R → R
is a continuous function satisfying (4.3). Then, if z ∈ C([0, T ];AL∞τ ) such that for almost every
t ∈ (0, T ) we have that zt, zy ∈ AL∞τ and z is a solution of (4.7) with initial data z(0) = z0 we
have estimate

(4.10) sup
t∈[0,T ]

‖P0z‖AL∞τ . ‖P0z0‖AL∞τ0 + ‖P>0z‖L∞T AL∞τ + ‖P0f‖L1
TAL

∞
τ

where the implicit constant depends only on δ.

Proof. Applying P0 to the equation (4.7) and using that for j ≥ 8 we have P0P≤j = P0P≤4 = P0,
and P≤4P>j = 0 we obtain

P0zt + bP0zy = −[P0, b]zy + P0[P≤4, b]z>j,y + P0f,

where z>j = P>jz.

From (3.4) and (4.3) we have

‖by‖L∞T L∞ . ‖Cτ by‖L∞T L∞ .M.

Applying the estimates (3.16) and (3.4), we may then bound

‖[P0, b]zy‖L1
TL
∞ + ‖P0[P≤4, b]z>j,y‖L1

TL
∞ + ‖P0f‖L1

TL
∞ . T‖by‖L∞T L∞‖z‖L∞T L∞ + ‖P0f‖L1

TL
∞

. δ‖z‖L∞T AL∞τ + ‖P0f‖L1
TAL

∞
τ
.



16 BENJAMIN HARROP-GRIFFITHS AND JEREMY L. MARZUOLA

Applying Lemma 4.3 we may find a solution Y of (4.8) so that the map y → Y is a diffeo-
morphsim. Writing (z ◦ Y )(t, y) = z(t, Y (t, y)), etc. we obtain

∂t((P0z) ◦ Y ) = (−[P0, b]zy + P0[P≤4, b]z>j,y + P0f) ◦ Y.

As a consequence, we may bound

sup
t∈[0,T ]

‖P0z‖L∞ . ‖z0‖L∞ + ‖[P0, b]zy‖L1
TL
∞ + ‖P0[P≤4, b]z>j,y‖L1

TL
∞ + ‖P0f‖L1

TL
∞

. ‖z0‖L∞T AL∞τ + δ‖z‖L∞T AL∞τ + ‖P0f‖L1
TAL

∞
τ
.

Using that e±τDyP≤4 is bounded on L∞ and P≤4P0 = P0 we may then bound

sup
t∈[0,T ]

‖P0z‖AL∞τ . sup
t∈[0,T ]

‖P0z‖L∞ .

Finally, we split

‖z‖AL∞τ ≤ ‖P0z‖AL∞τ + ‖P>0z‖AL∞τ
so that, by choosing 0 < δ � 1 sufficiently small, we obtain the estimate (4.10). �

5. Proof of Theorem 2.2

In this section we prove the existence of a solution (U,W ) of the system (2.6), (2.8) by taking
the (weak) limit of a sequence of solutions to a sequence of regularized systems. In our proof of
existence we will consider U,W to be independently defined functions, i.e. not necessarily satisfying
the identity (2.3). Once we have proved the existence of a solution to the system (2.6), (2.8), it
is clear that if the initial data satisfies (2.3) then the corresponding solution must also satisfy this
identity.

Our regularization of the system (2.6), (2.8) is the following:

iUt = P≤j

[
−iBU≤j,y + U≤j,yy + 2iβ≤jU≤j,y + µ|U≤j |2U≤j

]
,(5.1a)

iWt = P≤j

[
−iBW≤j,y +W≤j,yy +

(
2(W≤j)

2 − 1
2 |W≤j |

2
)
y

+ 3iα≤jβ≤jW≤j + 2µ|U≤j |2α≤j
]
,(5.1b)

where we denote f≤j = P≤jf , take α, β to be the real and imaginary parts of W as in (2.4), and
define the regularized velocity

B(t, y; j) = −3 sech(2−jy)

∫ y

0
α≤j(t, ζ)β≤j(t, ζ) dζ.

We note that the velocity b is expected to have linear (in y) growth as |y| → ∞. In the regularized
version B we introduce an additional spatial weight to ensure that the velocity is bounded, albeit
with a bound that depends on j.

We first prove the existence of a solution to the regularized system (5.1):

Lemma 5.1. Given 0 < s ≤ 1
2 , 0 < τ0 ≤ 1 and (U0,W0) ∈ AHs

τ0 ×AZ
s
τ0 there exists a time T0 > 0

and a solution (U,W ) ∈ C1([0, T0];AHs
τ0 ×AZ

s
τ0) of (5.1) with initial data (U,W )(0) = (U0,W0).

Proof. We first bound the velocity B by

‖B‖L∞ . 2j‖α≤j‖L∞‖β≤j‖L∞ . 2j‖W‖2L∞ .
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Next, we apply Bernstein’s inequality followed by the estimate (3.4) to bound

‖RHS(5.1a)‖AHs
τ0
. eτ02j2sj

[
22j‖W‖2L∞‖U‖L2 + 22j‖U‖L2 + 2j‖W‖L∞‖U‖L2 + 2j‖U‖3L2

]
.τ0,j

(
1 + ‖(U,W )‖AHs

τ0
×AZsτ0

)2‖(U,W )‖AHs
τ0
×AZsτ0

,

‖RHS(5.1b)‖AL∞τ0 . e
τ02j
[
22j‖W‖3L∞ + 22j‖W‖L∞ + 2j‖W‖2L∞ + ‖W‖3L∞ + 2j‖U‖2L2‖W‖L∞

]
.τ0,j

(
1 + ‖(U,W )‖AHs

τ0
×AZsτ0

)2‖(U,W )‖AHs
τ0
×AZsτ0

,

‖∂yRHS(5.1b)‖
Hs− 1

2
. eτ02j

[
22j‖W‖L∞‖Wy‖L2 + 22j‖Wy‖L2 + 2j‖W‖L∞‖Wy‖L2

+ ‖W‖2L∞‖Wy‖L2 + 2
3
2
j‖W‖L∞‖U‖2L2

]
.τ0,j

(
1 + ‖(U,W )‖AHs

τ0
×AZsτ0

)2‖(U,W )‖AHs
τ0
×AZsτ0

.

Applying these bounds, and identical bounds for the difference of two solutions, we see that
RHS(5.1) is Lipschitz continuous as a map from AHs

τ0×AZ
s
τ0 to itself. The proof is then completed

by applying the Picard-Lindelöf Theorem. �

We now turn to the proof of Theorem 2.2. Our goal here is to prove uniform (in j) estimates for
solutions of (5.1). These uniform bounds show that: 1) The solution of (5.1) can be extended to a
j-independent time T > 0; 2) We may pass to a (weak) limit as j →∞ to obtain a solution of the
system (2.6), (2.8). As is standard in such arguments, our proof of these uniform bounds takes the
form of a bootstrap estimate, relying on the local existence provided by Lemma 5.1.

Proof of Theorem 2.2. We assume that j ≥ 8 and choose a sufficiently small constant 0 < δ =
δ(s) � 1, independent of j, as in the hypotheses of Propositions 4.1, 4.4. Next we choose K =
K(δ, s, τ0) ≥ 1 and M = M(K, δ, s, τ0, U0,W0) ≥ 1 to be sufficiently large constants. Given
these constants, we set T∗ = δ

2M and τ ∈ C1([0, T ]) as in (4.2). We will subsequently ignore the
dependence of the bounds on δ, s, which we can assume have been fixed.

We make the bootstrap assumption that for some 0 < T ≤ T∗ we have

(5.2) sup
t∈[0,T ]

‖U‖AHs
τ

+
√
Mτ0‖U‖

L2
TAH

1
2
τ

+ sup
t∈[0,T ]

‖W‖AZsτ +
√
Mτ0‖Wy‖L2

TAL
2
τ
≤
√
M
K .

Our goal will be to prove that if the solution of (5.1) satisfies (5.2), then in fact it must satisfy

(5.2) with RHS(5.2) replaced by
√
M

10K . By applying Lemma 5.1, our solution may then be extended
until time T = T∗ and satisfies the estimate (5.2). We remark that this application of Lemma 5.1
uses that, given 0 ≤ t1 < t2 ≤ T∗, we have∫ t2

t1

‖f‖2
AH

1
2
τ

dt . (τ0M)2s−1(t2 − t1)2s sup
t∈[t1,t2]

‖f‖2AHs
τ(t1)

.

In particular, this motivates the difference between the pointwise-in-time and L2-in-time regularities
in (5.2).

We first consider estimates for the coefficient B. Here it will be useful to denote

f (1)(y) = −3 sech(2−jy), f (2)(y) = 3 tanh(2−jy) sech(2−jy)
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so that

By = f (1)α≤jβ≤j︸ ︷︷ ︸
I1

+ 2−jf (2)P>0

∫ y

0
α≤jβ≤j dζ︸ ︷︷ ︸

I2

+ 2−jf (2)P0

∫ y

0
α≤jβ≤j dζ︸ ︷︷ ︸

I3

.

We observe that for ` = 1, 2 the functions f (`)(y) are analytic on the strip {y : | Im y| ≤ 1} ⊆ C
and hence

e±τDyf (`)(y) = f (`)(y ∓ iτ).

In particular, using the embedding L∞∩Ḣ1 ⊆ Z0, we may use the explicit expressions for e±τDyf (`)

to obtain the j, τ -independent bounds

‖f (`)‖AZ0
τ
. 1, ‖〈y〉e±τDyf (`)‖Z0 . 2j ,

Applying the product estimate (3.9) with the fact that∥∥∥∥P>0

∫ y

0
α≤jβ≤j dζ

∥∥∥∥
AZ0

τ

. ‖α≤jβ≤j‖AZ0
τ
,

we may then bound

‖I1‖AZ0
τ

+ ‖I2‖AZ0
τ
. ‖α≤jβ≤j‖AZ0

τ
. ‖W‖AL∞τ ‖W‖AZ0

τ
,

uniformly in j. For the remaining term we first write

e±τDyP0

∫ y

0
α≤jβ≤j dζ =

∫
K±(y − z)

(∫ z

0
α≤jβ≤j dζ

)
dz,

where K± is the kernel of e±τDyP0. As the functions K± are Schwartz, we may bound∣∣∣∣e±τDyP0

∫ y

0
α≤jβ≤j dζ

∣∣∣∣ . 〈y〉‖α≤j‖L∞‖β≤j‖L∞ . 〈y〉‖W‖2AL∞τ∣∣∣∣∂ye±τDyP0

∫ y

0
α≤jβ≤j dζ

∣∣∣∣ . ‖α≤j‖L∞‖β≤j‖L∞ . ‖W‖2AL∞τ .
Again using the embedding L∞ ∩ Ḣ1 ⊆ Z0, with the fact that 〈y〉−1 ∈ L2, this yields the estimate∥∥∥∥ 1

〈y〉e
±τDyP0

∫ y

0
α≤jβ≤j dζ

∥∥∥∥
Z0

. ‖W‖2AL∞τ ,

from which we obtain the j-independent bound

‖I3‖AZ0
τ
. ‖W‖2AL∞τ .

Combining these bounds, we obtain

(5.3) ‖By‖AZ0
τ
. ‖W‖AL∞τ ‖W‖AZ0

τ
. M

K2 .

In particular, provided K � 1 is sufficiently large (independently of all other parameters), we see
that for all t ∈ [0, T ] we have

‖By‖AZ0
τ
≤M,

and hence the hypothesis (4.3) of Proposition 4.1 is satisfied (with b replaced by B).

Next we consider bounds for U , which we obtain by applying Proposition 4.1. Applying the
estimate (3.12) and the bootstrap assumption (5.2) we may bound

‖β≤jU≤j,y‖
L2
TAH

s− 1
2

τ

. ‖W‖L∞T AZ0
τ
‖U‖

L2
TAH

s+1
2

τ

.
√
M
K ‖U‖

L2
TAH

s+1
2

τ

,
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uniformly in j. Using the trilinear estimate (3.13) and the bootstrap assumption (5.2) we estimate

‖|U≤j |2U≤j‖L1
TAH

s
τ
. ‖U‖L∞T AL2

τ
‖U‖

L2
TAH

1
2
τ

‖U‖
L2
TAH

s+1
2

τ

.
√
M

K2√τ0 ‖U‖L2
TAH

s+1
2

τ

,

uniformly in j. Applying Proposition 4.1, we may then bound

sup
t∈[0,T ]

‖U‖AHs
τ

+
√
Mτ0‖U‖

L2
TAH

s+1
2

τ

. ‖U0‖AHs
τ0

+
(

1
Kτ0
√
M

+ 1
K2τ0

)√
Mτ0‖U‖

L2
TAH

s+1
2

τ

,

uniformly in j. Provided K is sufficiently large (depending only on δ, s, τ0) we obtain the estimate

(5.4) sup
t∈[0,T ]

‖U‖AHs
τ

+
√
Mτ0‖U‖

L2
TAH

s+1
2

τ

.K ‖U0‖AHs
τ0
,

uniformly in M ≥ 1 and j. In particular, provided M � 1 is sufficiently large (depending on
U0,K, δ, s, τ0) we have

sup
t∈[0,T ]

‖U‖AHs
τ

+
√
Mτ0‖U‖

L2
TAH

1
2
τ

≤
√
M

20K ,

which closes the first part of the bootstrap.

Next we consider bounds for Wy, which will once again be proved using Proposition 4.1. Differ-
entiating (5.1b), we obtain the equation

i (Wty + P≤j(BW≤j,yy)) = P≤jW≤j,yyy

+ P≤j

[
4W≤jW≤j,y − 1

2W̄≤jW≤j,y −
1
2W≤jW̄≤j,y + 2µ|U≤j |2α≤j

]
y

+ iP≤j

[
3α≤j,yβ≤jW≤j + 3α≤jβ≤j,yW≤j + 3α≤jβ≤jW≤j,y −ByW≤j,y

]
.

Applying the estimate (3.8) we may bound

‖(4W≤jW≤j,y− 1
2W̄≤jW≤j,y−

1
2W≤jW̄≤j,y)y‖L2

TAH
s−1
τ
. ‖W‖L∞T AL∞τ ‖Wy‖L2

TAH
s
τ
.
√
M
K ‖Wy‖L2

TAH
s
τ
,

uniformly in j. Similarly, using that T . 1
M , with (3.9), (3.12) we obtain

‖α≤jβ≤j,yW≤j + α≤j,yβ≤jW≤j + α≤jβ≤jW≤j,y‖
L1
TAH

s− 1
2

τ

. T‖W‖L∞T AL∞τ ‖W‖L∞T AZ0
τ
‖Wy‖

L∞T AH
s− 1

2
τ

. 1
K2 ‖Wy‖

L∞T AH
s− 1

2
τ

,

and using the estimate (5.3) with (3.12), we also have

‖ByW≤j,y‖
L1
TAH

s− 1
2

τ

. T‖By‖L∞T AZ0
τ
‖Wy‖

L∞T AH
s− 1

2
τ

. 1
K2 ‖Wy‖

L∞T AH
s− 1

2
τ

,

where both estimates are again uniform in j. Finally, applying the estimate (3.14) we may bound

‖(|U≤j |2α≤j)y‖L2
TAH

s−1
τ
. ‖U‖

L2
TAH

s+1
2

τ

‖U‖L∞T AL2
τ
‖W‖L∞T AL∞τ + ‖U‖2L∞T AL2

τ
‖Wy‖L2

TAH
s
τ

. M
K2

(
‖U‖

L2
TAH

s+1
2

τ

+ ‖Wy‖L2
TAH

s
τ

)
,

uniformly in j. Applying Proposition 4.1 we then obtain

sup
t∈[0,T ]

‖Wy‖
AH

s− 1
2

τ

+
√
Mτ0‖Wy‖L2

TAH
s
τ
. ‖W0y‖

AH
s− 1

2
τ0

+
(

1
Kτ0
√
M

+ 1
K2τ0

)√
Mτ0‖Wy‖L2

TAH
s
τ

+ 1
K2 ‖Wy‖

L∞T H
s− 1

2
τ

+ 1
K2τ0

√
Mτ0‖U‖L2

TH
s
τ
,
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uniformly in j. Provided K � 1 is sufficiently large (depending only on δ, s, τ0), we may then apply
the estimate (5.4) to yield

(5.5) sup
t∈[0,T ]

‖Wy‖
AH

s− 1
2

τ

+
√
Mτ0‖Wy‖L2

TAH
s
τ
.K ‖U0‖AHs

τ0
+ ‖W0y‖

AH
s− 1

2
τ0

,

uniformly in M ≥ 1 and j. In particular, provided M � 1 is sufficiently large (depending on
U0,W0,K, δ, s, τ0) we may ensure that

sup
t∈[0,T ]

‖Wy‖
AH

s− 1
2

τ

+
√
Mτ0‖Wy‖L2

TAL
2
τ
≤
√
M

40K ,

which closes the next part of the bootstrap.

For the final part of the bootstrap, we first apply Bernstein’s inequality and (5.5) to bound

(5.6) sup
t∈[0,T ]

‖P>0W‖AL∞τ . sup
t∈[0,T ]

‖Wy‖
AH

s− 1
2

τ

.K ‖U0‖AHs
τ0

+ ‖W0y‖
AH

s− 1
2

τ0

,

provided K � 1 is sufficiently large, uniformly in M ≥ 1 and j. It remains to bound the low
frequencies, for which we will use Proposition 4.4. We first apply Bernstein’s inequality, the estimate
(5.5), and the fact that T . 1

M to bound

‖P0P≤jW≤j,yy‖L1
TAL

∞
τ
. T‖Wy‖

L∞T AH
s− 1

2
τ

.K 1
M

(
‖U0‖ALsτ0 + ‖W0y‖

AH
s− 1

2
τ0

)
,

provided K � 1 is sufficiently large, uniformly in M ≥ 1 and j. Similarly, we may bound

‖P0(2W 2
≤j − 1

2 |W≤j |
2)y‖L1

TAL
∞
τ
. 1

M ‖W‖
2
AL∞τ

. 1
K
√
M
‖W‖L∞T AL∞τ ,

‖P0(α≤jβ≤jW≤j)‖L1
TAL

∞
τ
. T‖W‖3L∞T AL∞τ .

1
K2 ‖W‖L∞T AL∞τ ,

‖P0(|U≤j |2α≤j)‖L1
TAL

∞
τ
. ‖|U |2α‖L1

TAL
1
τ
. T‖U‖2L∞T AL2

τ
‖W‖L∞T AL∞τ .

1
K2 ‖W‖L∞T AL∞τ ,

where all the estimates are uniform in j. Applying these bounds, Proposition 4.4, and the estimates
(5.4) and (5.6) we obtain

sup
t∈[0,T ]

‖W‖AL∞τ . sup
t∈[0,T ]

‖P0W‖AL∞τ + sup
t∈[0,T ]

‖P>0W‖AL∞τ

. ‖W0‖AL∞τ + C(K)
(
‖U0‖AHs

τ0
+ ‖W0y‖

AH
s− 1

2
τ0

)
+
(

1
K
√
M

+ 1
K2

)
‖W‖L∞T AL∞τ ,

uniformly in j, where C(K) is a constant depending only on K, δ, s, τ0. Once again, provided K � 1
is sufficiently large (depending only on δ, s, τ0) we obtain the estimate

(5.7) sup
t∈[0,T ]

‖W‖AL∞τ .K ‖U0‖AHs
τ0

+ ‖W0‖AZsτ0 ,

uniformly in M ≥ 1 and j. Consequently, provided M � 1 is sufficiently large (depending only on
U0,W0,K, s, δ, τ0) we obtain the bound

sup
t∈[0,T ]

‖W‖AL∞τ ≤
√
M

40K ,

which suffices to close the bootstrap.

With the bootstrap closed, the estimate (2.9) for solutions of (5.1a) follows from (5.4) and the
estimate (2.10) for solutions of (5.1b), from (5.5) and (5.7), where both estimates are uniform
in j. Passing to a subsequence as j → ∞, we may extract a weak* limit U ∈ Cw([0, T ];AHs

τ )
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and W ∈ Cw([0, T ];AZsτ ) satisfying the equations (2.6), (2.8) and the estimates (2.9), (2.10).
Finally, the estimate (2.11) follows from observing that for a suitable (very large) implicit constant,
independent of U0,W0, we may take

M . ‖U0‖2AHs
τ0

+ ‖W0‖2AZsτ0 .

�

6. Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2. Due to the existence of a solution to the system (2.6),
(2.8) proved in Theorem 2.2, our main tasks in this section will first be to invert the change of
variables (2.1) and then be to understand the regularity of our solution at the endpoints ±x0 of
the interval I.

6.1. Existence. Given initial data u0 ∈ S satisfying our hypotheses, we denote the initial change
of variables by

y0(x) =

∫ x

0

1

|u0(ζ)|
dζ,

which we recall is a well-defined diffeomorphism from I onto R. We then define the functions
U0,W0 : R→ C by

U0(y0(x)) = u0(x) and W0(y0(x)) =
ū0(x)u0x(x)

|u0(x)|
.

As u0 ∈ S, there exists some 0 < s ≤ 1
2 and 0 < τ0 ≤ 1 so that U0 ∈ AHs

τ0 and W0 ∈ AZsτ0 . We
may then apply Theorem 2.2 to obtain a solution of the system (2.6), (2.8) on some time interval
[0, T ].

A priori, the solution (U,W ) constructed in Theorem 2.2 is a distributional solution of the system
(2.6), (2.8). However, by Sobolev embedding, for any n ≥ 0 and t ∈ [0, T ] the space of bounded
Cn functions is embedded in both AHs

τ and AZsτ . In particular, for any multi-index κ ∈ N2 the
functions ∇κt,yU,∇κt,yW are continuous and bounded on [0, T ] × R; for any t ∈ [0, T ] the functions
∇κt,yU,∇κt,y∂yW vanish as |y| → ∞; and U,W are classical solutions of (2.6), (2.8) on [0, T ]× R.

Applying Lemma 4.3, for any y ∈ R we may find a solution of the ODE{
Yt(t, y) = b(t, Y (t, y))− β(t, Y (t, y)),

Y (0, y) = y,

and by differentiating, it is clear that Y : [0, T ]× R→ R is smooth. In particular, c(t) = Y (t, 0) is
a solution of (2.5).

As U is smooth, |U | is Lipschitz. Further, as U solves (2.6), we may compute that

(6.1) (|U |)t +
(
(b− β)|U |

)
y

= 0.

In particular,

∂t

(
Yy(t, y)|U(t, Y (t, y))|

)
= 0.

Using the estimate (4.9) and that |U0(y)| > 0 for every y ∈ R, we obtain

(6.2) |U(t, y)| > 0 for every (t, y) ∈ [0, T ]× R,
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and consequently |U | is smooth. Further, as |U(t, y)| → 0 as |y| → ∞, we may use the equations
(6.1), (2.5) to obtain

d

dt

∫ ∞
c(t)
|U(t, ζ)| dζ = 0 =

d

dt

∫ c(t)

−∞
|U(t, ζ)| dζ.

From the definition of U(0, y), we then have

(6.3)

∫ ∞
c(t)
|U(t, ζ)| dζ = x0 =

∫ c(t)

−∞
|U(t, ζ)| dζ.

Next we define

x(t, y) :=

∫ y

c(t)
|U(t, ζ)| dζ,

and from (6.2), (6.3) we see that for any t ∈ [0, T ] the map y 7→ x(t, y) is a smooth diffeomorphsim
from R onto I. Further, by construction, the map y 7→ x(0, y) is the inverse of y0. We then take

u(t, x) :=

{
U(t, y) if x = x(t, y) ∈ I,
0 if x 6∈ I.

As the map (t, y) 7→ x(t, y) is smooth as a map from [0, T ]× R→ I and U is a smooth solution of
(2.6), the function u is a smooth solution of (QLS) on [0, T ]× I and satisfies u(0, x) = u0(x).

It remains to verify that u is sufficiently well-behaved at the endpoints ±x0 to solve (QLS) on
[0, T ]×R. We first note that as |U | → 0 as |y| → ∞ we have that u ∈ C([0, T ]×R) is smooth away
from x = ±x0. Further, for x = x(t, y) we have

ux =
U

|U |
W and

(
1
2u

2
)
xx

=
U2

|U |2
(

2W 2 − αW +Wy

)
.

In particular, ux, (
1
2u

2)xx ∈ C([0, T ];L∞(R)) are smooth away from x = ±x0. This suffices to
show that u solves (QLS), where both sides of the equation make sense as continuous functions on
[0, T ]× R.

6.2. Conservation laws. By construction, the solution u conserves its support. To prove that it
also conserves its mass, momentum, and energy it suffices to show that our solution has sufficient
regularity to justify the integrations by parts.

For the conservation of mass we only require that that u ∈ C([0, T ]×R) is supported on Ī, and
that ux, (

1
2u

2)xx ∈ C([0, T ];L∞(R)).

For the conservation of momentum and energy, we also require that
[
ū(1

2u
2)xx

]
x
∈ C([0, T ];L∞(R)).

However, this follows from the observation that for x = x(t, y) we have[
ū
(

1
2u

2
)
xx

]
x

=
U

|U |

(
4WWy − αWy − αyW +Wyy + 2W 3

)
.

6.3. Uniqueness and continuity of the solution map. Finally, we consider the problem of
uniqueness and continuity of the solution map in L2. This follows from a straightforward energy
estimate:



A QUASILINEAR SCHRÖDINGER EQUATION WITH DEGENERATE DISPERSION 23

Lemma 6.1. Suppose that for some T > 0 and j = 1, 2 the functions u(j) ∈ C([0, T ] × R) are

solutions of (QLS) with initial data u(j)(0) = u
(j)
0 that are non-zero and smooth on I, supported

on Ī, and such that u
(j)
x ,
[

1
2

(
u(j)
)2]

xx
∈ C([0, T ];L∞(R)). Then we have the estimate

(6.4) sup
t∈[0,T ]

‖u(1) − u(2)‖L2 . ‖u(1)
0 − u

(2)
0 ‖L2 .

Proof. We first note that under our hypotheses on u(j) we may justify the integration by parts

〈iu(j)
t , u(k)〉 = −1

2〈[(u
(j))2]x, (u

(j)u(k))x〉+ µ〈(u(j))2, u(j)u(k)〉.

Consequently, taking w = u(1) − u(2) and using the conservation of mass, we obtain the identity

d

dt
‖w‖2L2 = −1

2 Im〈ax, (w2)x〉+ µ Im〈a,w2〉,

where

a = (u(1))2 + (u(2))2.

Using that ax ∈ C([0, T ]×R) and axx ∈ C([0, T ];L∞(R)), we may integrate by parts to obtain the
estimate

d

dt
‖w‖2L2 . ‖a‖W 2,∞‖w‖2L2 ,

and the estimate (6.4) then follows from Gronwall’s Inequality. �

This completes the proof of Theorem 1.2. �

7. Stability of the compact breather

In this section we prove Theorem 1.3. We explore the concentration compactness approach from
Cazenave-Lions [5] in the context of compacton stability. Rather than working with the variable u
it will be useful to instead work with q := u2. By a slight abuse of notation, in this section we will
denote the Hamiltonian and mass in terms of q instead of u, i.e.

H[q] = 1
4

∫
|qx|2 dx− 1

2

∫
|q|2 dx, M [q] =

∫
|q| dx.

For simplicity let us take ω = 1 and φ = φ1 from (1.4). We denote the orbit of the square of the
compacton by

E :=
{
e2iθφ(· − h)2 : θ, h ∈ R

}
.

The following result follows from the analysis of [14]:

Proposition 7.1.

(1) If q ∈ L1 ∩ Ḣ1 is a solution of the minimization problem

(7.1) minH[q] subject to M [q] =
√

2π

then q ∈ E.

(2) Given any sequence {q(n)} ⊂ L1∩ Ḣ1 such that M [q(n)]→
√

2π and H[q(n)]→ H[φ2], there

exists a sequence {h(n)} ⊆ R so that the sequence {q(n)(· + h(n))} is relatively compact in

L1 ∩ Ḣ1.
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Proof. The proof of (1) follows from the remark at the beginning of Section 3.2 in [14]. The proof
of (2) follows by a slight adaptation of the proof of Theorem 2.7 in [14]. �

Proof Theorem 1.3. We proceed by contradiction. Namely, assume that our orbital stability result

does not hold. Then there exists ε > 0 and a sequence of initial data {u(n)
0 } ⊆ S so that after

applying Theorem 1.2 we obtain corresponding solutions u(n) defined on the time interval [0, Tn],

such that, with q
(n)
0 = (u

(n)
0 )2 and q(n) = (u(n))2, we have M [q

(n)
0 ] →

√
2π and H[q

(n)
0 ] → H[φ2],

and times 0 ≤ tn ≤ Tn so that

inf
ψ∈E
‖q(n)(tn, ·)− ψ‖L1∩Ḣ1 ≥ ε.

As q(n)(tn, ·) is a minimizing sequence for the constrained minimization problem (7.1), and using

the fact that the solution q(n) conserves the mass and energy, we may apply Proposition 7.1 to
obtain a contradiction. �

Appendix A. Changes of variable

In this section we outline the computations leading the the equations (2.6) for U and (2.8) for
W .

We first observe that (
|u|2
)
t

= 2 Im
(
|u|2ūux

)
x
.

Differentiating the expression (2.1) and using the equation (2.5) to replace ct we obtain

yt(t, x) = −3

∫ x

0

1

|u|
Re

(
ūuζ
|u|

)
Im

(
ūuζ
|u|

)
dζ −

∫ x

0
Im

(
ūuζ
|u|

)
ζ

dζ + ct(t)

= −3

∫ y(t,x)

c(t)
α(t, ζ)β(t, ζ) dζ + β(t, c(t))− β(t, y(t, x)) + ct(t)

= b(t, y(t, x))− β(t, y(t, x)).

Consequently,

∂t
[
U(t, y(t, x))

]
=
[
Ut + (b− β)Uy

]
(t, y(t, x)).

The equation (2.6) then follows from the observation that

ux(t, x) =

[
1

|U |
Uy

]
(t, y(t, x)),

uxx(t, x) =

[
1

|U |2
(Uyy − αUy)

]
(t, y(t, x)).

To derive the equation (2.8) we first compute that

i

(
ūux
|u|

)
t

=
ū

|u|
(
ū(uux)x + µ|u|2u

)
x
− ux
|u|
(
u(ūūx)x + µ|u|2ū

)
− i ūux
|u|3

Im

(
|u|3 ūux
|u|

)
x

.
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Changing variables and using that Uy = WU we obtain

i(Wt + (b− β)Wy) =
Ū

|U |2

(
Ū

|U |

(
U2

|U |
W

)
y

+ µ|U |2U

)
y

− U

|U |2
W

(
U

|U |

(
Ū2

|U |
W̄

)
y

+ µ|U |2Ū

)

− i W
|U |3

(
|U |3β

)
y
.

The equation (2.8) then follows from the fact that Uy = UW and (|U |)y = α|U |.

Appendix B. Multilinear estimates

In this section we prove Proposition 3.6. We will rely on the following lemma, the proof of which
may be found in e.g. [54, Chapter 3 and Appendix D]:

Lemma B.1. For s ∈ R, σ ≥ 0 and any integer k ≥ 0 we have the estimates

‖T∂ky f
g‖Hs . ‖f‖L∞‖∂kyg‖Hs ,(B.1)

‖T〈Dy〉σfg‖Hs . ‖f‖L2‖〈Dy〉s+σg‖BMO,(B.2)

‖Π[f, g]‖Hσ . ‖〈Dy〉−sf‖BMO‖g‖Hσ+s .(B.3)

Proof of Proposition 3.6.

Proof of (3.8). We decompose the product

fgy = Tfgy + Tgyf + Π[f, gy],

and then apply the estimates (B.1), (B.3).

Proof of (3.9). We first bound

‖fg‖L∞ . ‖f‖L∞‖g‖L∞ .
Next we decompose the product

fg = Tfg + Tgf + Π[f, P0g] + Π[f, P>0g].

For the low-high interactions we apply the estimate (B.1) to bound

‖∂yTfg‖
Hs− 1

2
. ‖f‖L∞‖gy‖

Hs− 1
2
,

‖∂yTgf‖
Hs− 1

2
. ‖fy‖

Hs− 1
2
‖g‖L∞ .

For the first high-high interaction, we observe that Π[f, P0g] = P≤16Π[P≤8f, P0g] so we may apply
(B.3) to bound

‖∂yΠ[f, P0g]‖
Hs− 1

2
. ‖Π[P≤8fy, P0g]‖L2 + ‖Π[P≤8f, P0gy]‖L2

. ‖P≤8fy‖L2‖g‖L∞ + ‖f‖L∞‖P0gy‖L2

. ‖fy‖
Hs− 1

2
‖g‖L∞ + ‖f‖L∞‖gy‖

Hs− 1
2
.

For the second high-high interaction, we again apply (B.3) to bound

‖∂yΠ[f, P>0g]‖
Hs− 1

2
. ‖f‖L∞‖P>0g‖

Hs+1
2
. ‖f‖L∞‖gy‖

Hs− 1
2
.

Proof of (3.10). We simply apply the estimate (B.1).

Proof of (3.11). We decompose

fgy −Tfgy = Tgyf + Π[f, gy].
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For the low-high interactions we apply the estimate (B.2), using that s ≤ 1, to obtain

‖Tgyf‖Hs . ‖〈Dy〉f‖BMO‖gy‖Hs−1 . ‖f‖W 1,∞‖g‖Hs .

For the high-high interactions we apply the estimate (B.3), using that s ≥ 0, to obtain

‖Π[f, gy]‖Hs . ‖〈Dy〉f‖BMO‖gy‖Hs−1 . ‖f‖W 1,∞‖g‖Hs .

Proof of (3.12). Again we decompose

fgy = Tfgy + Tgyf + Π[P0f, gy] + Π[P>0f, gy].

Applying (B.1) we may bound

‖Tfgy‖
Hs− 1

2
. ‖f‖L∞‖gy‖

Hs− 1
2
,

and applying (B.2), using that s ≤ 1
2 , we may bound

‖Tgyf‖Hs− 1
2
. ‖f‖BMO‖gy‖

Hs− 1
2
. ‖f‖L∞‖gy‖

Hs− 1
2
.

For the first high-high interaction we use that Π[P0f, gy] = P≤16Π[P0f, P≤8gy] and apply (B.3) to
bound

‖Π[P0f, gy]‖
Hs− 1

2
. ‖Π[P0f, gy]‖L2 . ‖f‖L∞‖P≤8gy‖L2 . ‖f‖L∞‖gy‖

Hs− 1
2
.

For the second high-high interaction we apply Bernstein’s inequality at the output frequency fol-
lowed by the Cauchy-Schwarz inequality to obtain

‖Π[P>0f, gy]‖
Hs− 1

2
.
∑
j≥0

2sj‖PjΠ[P>0f, gy]‖L1

.
∑
|k−`|<4

(
2

1
2
k‖PkP>0f‖L2

)(
2(s− 1

2
)`‖P`gy‖L2

)
. ‖P>0f‖

H
1
2
‖gy‖

Hs− 1
2
. ‖fy‖

H−
1
2
‖gy‖

Hs− 1
2
,

where we have used the fact that s > 0.

Proof of (3.13). Here it will be convenient to argue by duality. Consequently, we take a test function

φ ∈ H−s and decompose by frequency to obtain

〈fgh, φ〉 =
∑

j1,j2,j3,j4≥0

〈Pj1f · Pj2g · Pj3h, Pj4φ〉.

By symmetry, we may assume that j1 ≤ j2 ≤ j3 and then observe that the sum vanishes unless
|max{j2, j4} − j3| ≤ 8.

If j4 ≥ j2 then |j3 − j4| ≤ 8. We estimate the two lowest frequency terms in L∞ and the two
highest frequency terms in L2 and then apply Bernstein’s inequality to bound

|〈Pj1f · Pj2g · Pj3h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L∞‖Pj3h‖L2‖Pj4φ‖L2

. 2
1
2

(j1−j3)‖Pj1f‖L2‖Pj2g‖H 1
2
‖Pj3h‖Hs+1

2
‖Pj4φ‖H−s .

If j4 < j2 then |j2 − j3| ≤ 8 we proceed similarly, applying Bernstein’s inequality to estimate

|〈Pj1f · Pj2g · Pj3h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L2‖Pj3h‖L2‖Pj4φ‖L∞

. 2(s+ 1
2

)(j4−j3)+ 1
2

(j1−j2)‖Pj1f‖L2‖Pj2g‖H 1
2
‖Pj3h‖Hs+1

2
‖Pj4φ‖H−s .
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The estimate (3.13) then follows from several applications of the Cauchy-Schwarz inequality, first
summing over the lowest frequency, then the second lowest frequency, and finally the highest two
(comparable) frequencies.

Proof of (3.14). Again taking φ ∈ H−s and decomposing by frequency, it suffices to bound

|〈Pj1f · Pj2g · h, Pj4φ〉|,

where, by symmetry, we may assume that j1 ≤ j2. We then divide into 3 cases:

Case 1: j2 ≤ j4. For the low frequency part of h we apply Bernstein’s inequality to bound

|〈Pj1f · Pj2g · P≤j2h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L2‖P≤j2h‖L∞‖Pj3φ‖L2

. 2
1
2

(j1−j2)‖Pj1f‖L2‖Pj2g‖Hs+1
2
‖P≤j2h‖L∞‖Pj4φ‖H−s ,

where we have used that |j2 − j4| ≤ 8. For the high frequency part we decompose by frequency
j3 > j2 and bound

|〈Pj1f · Pj2g · Pj3h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L∞‖Pj3h‖L2‖Pj4φ‖L2

. 2
1
2

(j1−j3)+ 1
2

(j2−j3)‖Pj1f‖L2‖Pj2g‖L2‖Pj3hy‖Hs‖Pj4φ‖H−s ,

where we have used that j3 > 0 and |j3 − j4| ≤ 8.

Case 2: j1 ≤ j4 < j2. Here we proceed similarly, bounding the low frequency part of h by

|〈Pj1f · Pj2g · P≤j4h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L2‖P≤j4h‖L∞‖Pj4φ‖L2

. 2
1
2

(j1−j2)‖Pj1f‖L2‖Pj2g‖Hs+1
2
‖P≤j4h‖L∞‖Pj4φ‖H−s ,

and the high frequency part, where j3 > j4, by

|〈Pj1f · Pj2g · Pj3h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L2‖Pj3h‖L2‖Pj4φ‖L∞

. 2
1
2

(j1−j3)+(s+ 1
2

)(j4−j3)‖Pj1f‖L2‖Pj2g‖L2‖Pj3hy‖Hs‖Pj4φ‖H−s ,

Case 3: j4 < j1. Proceeding as in the previous two cases we bound

|〈Pj1f · Pj2g · P≤j1h, Pj4φ〉| . ‖Pj1f‖L2‖Pj2g‖L2‖P≤j1h‖L∞‖Pj4φ‖L∞

. 2(s+ 1
2

)(j4−j2)‖Pj1f‖L2‖Pj2g‖Hs+1
2
‖P≤j4h‖L∞‖Pj4φ‖H−s ,

and for j3 > j1

|〈Pj1f · Pj2g · Pj3h, Pj4φ〉| . ‖Pj1f‖L∞‖Pj2g‖L2‖Pj3h‖L2‖Pj4φ‖L∞

. 2(s+ 1
2

)(j4−j3)+ 1
2

(j1−j3)‖Pj1f‖L2‖Pj2g‖L2‖Pj3hy‖Hs‖Pj4φ‖H−s .

Proof of (3.15). We decompose the commutator as

[〈Dy〉s, f ]gy = [〈Dy〉s,Tf ]gy +
(
〈Dy〉sΠ[P0f, gy]−Π[P0f, 〈Dy〉sgy]

)
+ 〈Dy〉sTgyf −T〈Dy〉sgyf + 〈Dy〉sΠ[P>0f, gy]−Π[P>0f, 〈Dy〉sgy].

For the first term we write

[〈Dy〉s, P≤j−4f ]Pjgy = [〈Dy〉sP≤j+4, P≤j−4f ]Pjgy

=

∫
Kj(y − z)

(
P≤j−4f(y)− P≤j−4f(z)

)
Pjgz(z) dz,



28 BENJAMIN HARROP-GRIFFITHS AND JEREMY L. MARZUOLA

where Kj is the kernel of 〈Dy〉sP≤j+4. We may then apply Young’s inequality to bound

‖[〈Dy〉s, P≤j−4f ]Pjgy‖L2 . ‖Kj(y)y‖L1‖P≤j−4fy‖L∞‖Pjgy‖L2 . ‖fy‖L∞‖Pjg‖Hs ,

where we have used that
‖Kj(y)y‖L1 . 2(s−1)j .

The second term is bounded similarly, using that

〈Dy〉sΠ[P0f, gy]−Π[P0f, 〈Dy〉sgy] = 〈Dy〉sP≤16Π[P0f, P≤8gy]−Π[P0f, 〈Dy〉sP≤16P≤8gy],

to obtain

‖〈Dy〉sΠ[P0f, gy]−Π[P0f, 〈Dy〉sgy]‖L2 . ‖fy‖L∞‖P≤8g‖L2 . ‖fy‖L∞‖g‖Hs .

For the remaining terms, we first apply the estimate (B.2), with the fact that s ≤ 1, to obtain

‖〈Dy〉sTgyf‖L2 + ‖T〈Dy〉sgyf‖L2 . ‖fy‖L∞‖g‖Hs .

Next, we apply the estimate (B.3) to bound

‖Π[P>0f, 〈Dy〉sgy]‖L2 . ‖fy‖L∞‖g‖Hs .

For the remaining term, if s > 0, we again apply the estimate (B.3) to bound

‖〈Dy〉sΠ[P>0f, gy]‖L2 . ‖fy‖L∞‖g‖Hs ,

whereas, if −1
2 < s < 0, we argue as in the proof of (3.12) to bound

‖〈Dy〉sΠ[P>0f, gy]‖L2 . ‖fyy‖
H−

1
2
‖g‖Hs .

Proof of (3.16). We first observe that

[P≤j , f ]P≤j−4gy = [P≤j , P>j−4f ]P≤j−4gy,

and hence we may bound

‖[P≤j , f ]P≤j−4gy‖L∞ . ‖P>j−4f‖L∞‖P≤j−4gy‖L∞ . ‖fy‖L∞‖g‖L∞ .
For the remaining term, we proceed as in the proof of (3.15) and write

[P≤j , f ]P>j−4gy =

∫
Kj(y − z)

(
f(y)− f(z)

)
P>j−4gz(z) dz,

where Kj is the kernel of P≤j . The estimate then follows from Young’s inequality. �
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Birkhäuser Boston, Inc., Boston, MA, 1991.
[55] A. Zilburg and P. Rosenau. On solitary patterns in Lotka-Volterra chains. J. Phys. A, 49(9):095101, 2016.
[56] A. Zilburg and P. Rosenau. On Hamiltonian formulations of the C1(m,a, b) equations. Phys. Lett. A,

381(18):1557–1562, 2017.
[57] A. Zilburg and P. Rosenau. Loss of regularity in the K(m,n) equations. Nonlinearity, 31(6):2651–2665, 2018.

E-mail address: harropgriffiths@math.ucla.edu

Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA

E-mail address: marzuola@math.unc.edu

Mathematics Department, University of North Carolina, Phillips Hall, Chapel Hill, NC 27599,
USA

https://arxiv.org/abs/2001.01014

	1. Introduction
	Outline of the proof
	Acknowledgement

	2. Reformulation of the problem
	2.1. Changes of variable
	2.2. Function spaces
	2.3. Existence for U,W
	2.4. The initial data set S

	3. Some preliminary estimates
	4. Linear estimates
	5. Proof of Theorem 2.2
	6. Proof of Theorem 1.2
	6.1. Existence
	6.2. Conservation laws
	6.3. Uniqueness and continuity of the solution map

	7. Stability of the compact breather
	Appendix A. Changes of variable
	Appendix B. Multilinear estimates
	References

