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Abstract. We describe QGLAB, a new MATLAB package for analyzing partial differential
equations on quantum graphs. The software is built on the existing, object-oriented MATLAB
directed-graph class, inheriting its structure and adding additional easy-to-use features. The package
allows one to construct a quantum graph and accurately compute the spectrum of elliptic operators,
solutions to Poisson problems, the linear and nonlinear time evolution of a variety of PDEs, the
continuation of branches of steady states (including locating and switching branches at bifurcations)
and more. It uses a unified framework to implement finite-difference and Chebyshev discretizations
of differential operators on a quantum graph. For simplicity, the package overloads many built-in
MATLAB functions to work on the class.

1. Introduction. This paper introduces and provides operating instructions
for QGLAB, a software package written in MATLAB for computations on quan-
tum graphs, with a special emphasis on solutions of the cubic nonlinear Schrödinger
equation (NLS). Many older examples of these remarkable objects—networks of one-
dimensional edges interacting via a set of natural vertex conditions—can be found
in the literature. However, the modern interest in the subject seems to begin with
an analysis of their spectral statistics in the work [54], whose authors seem to have
coined the term “quantum graphs.” The spectral theory and properties of operators
on quantum graphs have further developed rapidly from the pioneering work [40] in
which quantum graphs were realized as the limits of quantum equations on thin wire-
like domains. See also the works [41, 42, 49, 71] in this direction. Quantum graphs
provide effectively one-dimensional model equations that enable explicit calculations
that serve as a backbone for representing geometric and spectral theoretic properties
of much more complicated higher-dimensional quantum models. An explosion of re-
sults exploring their properties has followed. For further introduction to the history
and applications of quantum graphs, we recommend references [15, 17].

Numerical packages are essential to facilitate further study for many of the usual
reasons: e.g., making progress on larger-scale problems and those with nonlinearities
and time dependence all depend on intuition built from numerical experimentation
and visualization. This project provides a set of high-level tools that allow users to
quickly and easily set up, solve, and visualize the solutions to problems posed on
quantum graphs.

At the heart of the package is the definition of a quantum graph class, built on top
of MATLAB’s directed graph class. While we have striven to write a general-purpose
software package for quantum graph computations, the direction of development has
been guided by two classes of problems of research interest to its authors:

1. Efficient computation of bifurcation diagrams: standing waves of NLS occur
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along one-parameter families or branches rather than at isolated points. To
understand the solutions’ parameter dependence, it is essential to compute
such branches using continuation methods. Further, branches may cross, and
the stability of solutions change at isolated bifurcation points. The package
can detect the most common types of bifurcation points and switch branches
at these points; it has been used for this purpose in the publications [18, 47].

2. Spectral spatial accuracy and high-order time stepping: one of the goals,
to be described in future publications, is to compute time-periodic and time-
relative-periodic orbits of the full time-dependent NLS on a compact quantum
graph.

We wrote the code to allow the user to specify the quantum graph object at a high
level and insulate them from having to understand the detailed workings of the soft-
ware. We have overloaded many built-in MATLAB commands for basic calculations
and plotting to accomplish this objective. A similar package called GraFiDi, written
in Python, is described in [20]. While the two packages share many features, QGLAB
also includes spectrally accurate solvers, symbolic computation, and numerical contin-
uation capabilities. To achieve spectral accuracy while satisfying sometimes-complex
conditions at the vertices, QGLAB adopts several ideas developed for the Chebfun
package from [35], although QGLAB does not adapt the order of the polynomials
used to achieve maximum precision. It would be straightforward, but by no means
quick to implement the QGLAB architecture using Chebfun, but we have not cho-
sen this route—see [59] for an early implementation of similar ideas. The package
uses MATLAB’s many built-in graph capabilities, providing a simple and robust user
interface.

1.1. Defining a quantum graph. A quantum graph Γ consists of a directed
metric graph, considered as a complex of edges, on which a function space and
differential operators are defined. To be more specific, we define the graph Γ =
(V, E) as a set of vertices V = {vn, n = 1, . . . , |V| } and a set of directed edges
E = {em = (vi → vj), m = 1, . . . , |E| } and to each edge assign a positive length ℓm
and impose upon the edge a coordinate x that increases from 0 to ℓm as the edge is
traversed from the vi to vj . In general, we may consider the lengths of some or all of
the edges infinite, in which case that edge will be connected to a single vertex. For
computation, however, we require finite-length edges, so we will not discuss the case
of unbounded edges further. Define the degree of vertex vn, denoted dn to be the
number of edges that include that vertex as an initial or final point, counting twice if
an edge connects the vertex to itself.

We consider weighted graphs, for which there is associated to each edge a positive
weight wm used to define fluxes and, thus, boundary conditions. If the graph is taken
to be a model of a network of pipes or wires, we can think of the weight as proportional
to the cross-sectional area of a given pipe or wire.

An example graph, with |V| = 4 vertices and and |E| = 7 edges is shown in
Fig. 1.1. The degrees of the four vertices are d1 = 5, d2 = 4, d3 = 4, and d4 = 1.
Under our definition, there is no problem in taking multiple edges with the same
beginning and ending vertex, as seen between vertices v1 and v2 in the figure.

A function Ψ(x) defined on Γ can be thought of most simply as a collection of
functions defined on each of the edges Ψ|em = ψm(x), and a Laplace operator on the
graph is defined by

△|em =
d2

dx2
, for 0 < x < ℓm,
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Fig. 1.1: A directed graph with four vertices and seven edges.

subject to appropriate compatibility conditions at the vertices. Of course, defining
a Laplacian requires defining a function space. The graph and vertex conditions
define a quantum graph, and we are most concerned with vertex conditions giving
rise to a self-adjoint operator. We have implemented weighted Robin-Kirchhoff vertex
conditions and Dirichlet boundary conditions, although these are not the most general
self-adjoint boundary conditions; see e.g. [17].

The first dn − 1 equalities that define the vertex condition at the vertex vn are
simply continuity across the vertex. Let Vn be the set of all edges adjacent to the
vertex, double-counting in the case of self-directed edges. Continuity allows us to
define a function value at the vertex by

(1.1) Ψ(vn) ≡ ψi(vn) = ψj(vn),∀ei, ej ∈ Vn.

The weighted Robin-Kirchhoff flux condition is then

(1.2)
∑

em∈Vn

wmψ
′
m(vn) + αnΨ(vn) = 0,

where the derivative is, in all cases, taken in the direction pointing away from the
vertex. In the case wm ≡ 1, αn ≡ 0, this reduces to the Neumann-Kirchhoff vertex
condition, which is the natural generalization of the Neumann boundary condition
on a line segment. Interpreting the equation △Ψ = 0 as describing a steady state of
the heat equation, the Neumann-Kirchhoff vertex condition states that there is zero
net heat flux into the vertex. Introducing non-unit weights wm then generalizes this
condition to say that the flux on each edge is proportional to the weight of that edge.
Finally, letting αn ̸= 0 allows the vertex condition to generalize a Robin boundary
condition. The Dirichlet vertex condition is simply

(1.3) Ψ(vn) = 0.

In either case, we may also allow for nonhomogeneous vertex conditions by setting
the right-hand side of (1.2) or (1.3) to some value ϕn ̸= 0.

With these in hand, we may define norms and function spaces, e.g., Lp(Γ):

(1.4) ∥Ψ∥pLp(Γ) =

|E|∑
m=1

wm∥ψm∥pLp
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and the L2 inner product

(1.5) ⟨Ψ,Φ⟩ =
|E|∑

m=1

wm

∫ ℓm

0

ψ∗
m(x)ϕm(x) dx .

The inclusion of the weights wm in these definitions follows naturally from their
appearance in the conservation laws for evolution equations below and from demon-
strating that the Laplace operator is self-adjoint. We then define H1(Γ) as the space
of square-integrable functions with square-integrable first derivatives. More specifi-
cally, we define L2(Γ), H1(Γ), and H2(Γ) to be the space of functions that are, edge
by edge, in each of these function spaces, but we define L2

Γ to be the space L2(Γ)
equipped with the inner product (1.5). Similarly, H1

Γ is defined as the space of func-
tions in H1(Γ) satisfying the continuity condition (1.1), and H2

Γ consists of functions
in H2(Γ) satisfying both Eq. (1.1) and either the Robin-Kirchhoff condition (1.2) or
Dirichlet condition (1.3).

1.2. The Eigenvalue Problem. The first natural question to ask about the
Laplacian operator defined on Γ is to characterize its spectrum and eigenfunctions.
Such properties have been studied rather extensively; the recent works [7, 11, 15–
17, 39, 44, 50, 72] provide a broad overview.

The spectrum of a compact graph consists solely of discrete points, so the problem
consists of characterizing the set of eigenvalues λ and eigenfunctions Ψ such that

(1.6) △Ψ = λΨ.

All but a finite number of the eigenvalues are negative; this set is infinite and un-
bounded from below. The non-positive eigenvalues λ = −k2 can be found by seeking
the analytic solution

(1.7) ψm(x) = ame
ikx + bme

ik(ℓm−x) m = 1, 2, . . . , |E|.

The vertex conditions form a homogeneous system of 2|V| linear equations. Its so-
lution requires the vanishing of the determinant of the associated matrix, a function
Σ(k) known as the secular determinant. The authors of [17] demonstrate that Σ(k)
can be normalized to take real values when k ∈ R. The recent dissertation [26] shows
that the same is true under the more general vertex conditions (1.2). While QGLAB
consists primarily of numerical tools for the approximate solution of differential equa-
tions on quantum graphs, it can symbolically compute the graph’s real-valued secular
determinant.

1.3. PDE on a Quantum Graph. Our primary motivating problem for writing
QGLAB is the nonlinear Schrödinger equation

(1.8) i
∂Ψ

∂t
= △Ψ+ (σ + 1)|Ψ| 2σΨ,

where σ ≥ 0 and σ = 1 is the most commonly-studied cubic case. We are especially
interested in the stationary NLS obtained by assuming Ψ(x, t) = eiΛtΨ(x),

(1.9) −ΛΨ = △Ψ+ (σ + 1)|Ψ| 2σΨ.

We note that the evolution of Eq. (1.8) conserves both the L2 norm defined in Eq. (1.4)
and an energy

(1.10) E(Ψ) = ∥Ψ′∥2L2(Γ) − ∥Ψ∥2(σ+1)

L2(σ+1)(Γ)
+
∑
vn∈V

αn|Ψ(vn)| 2,
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where Ψ′ is defined edge-by-edge. The NLS equation on the real line also conserves a
momentum functional. In general, NLS equations on quantum graphs obey no such
conservation law unless certain other restrictions to the weights and initial conditions
hold; see [52].

Linear and nonlinear PDEs on quantum graphs have a long history, and recent
years have seen many advances. The book [63] gives an excellent introduction to var-
ious time-dependent equations on graphs. In particular, many groups have studied
the solutions of Eq. (1.9)s. We mention the recent survey articles [22, 67] and note the
many results about the existence and stability of ground state stationary solutions to
the NLS equation (1.8) in references [1, 3–6, 21, 24, 25, 27, 31–33, 74, 75], many from a
variational perspective. Similar works have studied the existence and stability of sta-
tionary states for Dirac-type equations [21] and KdV-type equations [70]. In addition,
recent works including [18, 45, 47, 60, 68] use asymptotic and bifurcation-theoretical
approaches to analyze the existence of multiple branches of solutions to (1.9). Ref-
erences including [2, 52, 64, 73] analyze the time-dependent phenomena exhibited by
evolution equations of Schrödinger, Dirac, and KdV type on graphs. This is just a
short overview of a massive subject. We do not claim to have captured all significant
contributions here, but to give a flavor of the type of questions that can be posed on
quantum graphs and the breadth of topics yet to be explored.

QGLAB has been explicitly written for PDE with Laplacian spatial derivative
terms. In addition to the previously discussed NLS equation, these include the wave
equation ([67]), heat equation ([13, 23]), and their nonlinear cousins such as the non-
linear Klein-Gordon equations, including sine-Gordon [46, 58, 73, 78] and the Kol-
mogorov–Petrovsky–Piskunov (KPP) equation [36], all of which can be defined on a
quantum graph. QGLAB provides examples of solving all of these PDEs.

1.4. Organization of the paper. Section 2 discusses the numerical methods
QGLAB uses to discretize and solve equations posed on quantum graphs. The long-
est part, Subsection 2.1, discusses the overall framework of the discretization and its
implementation using both finite-difference and Chebyshev approximations of deriv-
atives and the implementation of the vertex conditions. We apply this framework to
discretize eigenvalue problems in Subsection 2.2, where we also discuss the symbolic
calculation of the secular determinant for the general class of vertex conditions dis-
cussed. Subsection 2.3 describes the nonlinear solvers and continuation algorithms,
while Subsection 2.4 describes the implementation of time steppers for evolution equa-
tions. Section 3 is devoted to the MATLAB implementation of the tools discussed in
QGLAB, including a discussion of MATLAB’s directed graph class in Section 3.1 and
the QGLAB’s quantum graph class, which is built on top of this, in Section 3.2. Sec-
tion 3.3 discusses basic operations on class objects. We summarize our contributions
and give an outlook on potential future features and applications in Section 4. The
paper contains extensive supplementary materials in two sections here as an appendix.
The first, Sec. A, is devoted to demonstrating both the implementation and efficacy
of QGLAB on a variety of examples, including stationary problems—eigenvalue prob-
lems, the Poisson equation, and the computation and continuation of standing waves
and evolutionary PDE problems. The second, Sec. B, contains a complete listing of
user-callable function definitions and explicit instructions for their use.

2. Numerical Methods. This section discusses the numerical methods used to
implement the quantum graph class and solve various problems. It briefly presents
some examples described in detail in Sec. A of the appendix.
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2.1. Discretization and vertex conditions. QGLAB grew out of numeri-
cal studies in the authors’ research [47, 52, 60], but many groups have used finite-
difference and finite-element discretizations to approximate the quantum graph Lapla-
cian and solve PDEs, e.g. [8, 18, 20]. As mentioned in the introduction, Malenova
built a small quantum graph package using Chebfun [59].

The QGLAB package features routines to perform several tasks, including solving
nonlinear standing waves and numerically integrating evolution equations posed on a
quantum graph. Still, the most central task is to discretize the Laplace operator and
to solve the Laplace and Poisson equations posed on the quantum graph. We provide
two methods of discretization: centered differences and Chebyshev collocation. Most
of the examples provided work using either discretization, although the Chebyshev
discretization is, by construction, more accurate.

The two discretizations are implemented using a common framework: the function
Ψ(x) is approximated on an extended grid xext containing enough points to approx-
imate both the PDE solution and the vertex conditions, while the solution to the
PDE is approximated on a smaller interior grid containing two fewer points per edge.
Thus, the discrete Laplacian matrix is non-square, with 2|E| more columns than rows,
mapping from approximations on xext to approximations on xint. Second, the ver-
tex conditions are implemented as constraints rather than incorporated directly into
the discretized Laplacian matrix. This choice has several attractive features that we
describe below

Driscoll and Hale introduced non-square differentiation matrices using rectangular
discretization matrices for use in the Chebfun package [34, 35]. Aurentz and Trefethen
have written an excellent review, developing the theory for the block operators that
implement these ideas via a sequence of well-chosen examples [10].

2.1.1. Finite-difference discretization. The finite difference method is imple-
mented using standard second-order centered differences with the boundary conditions
enforced at so-called ghost points, as discussed, for example, in the textbook [38, Sec.
4.2.2]. We first review this technique for the discretization of the two-point boundary
value problem

(2.1)
d2u

dx2
= f(x), 0 < x < ℓ, u′(0) + α0u(0) = ϕ0, −u′(ℓ) + αℓu(ℓ) = ϕℓ.

and then discuss the straightforward extension to the case of quantum graphs. The
sign on the u′ term in the boundary conditions is chosen to agree with our quantum
graph convention that all derivatives are taken in the direction pointing away from a
vertex of the quantum graph in the definition of vertex conditions. Given a discretiza-
tion length h = ℓ

N , place points not at the usual lattice points but at xk =
(
k − 1

2

)
h

for 0 ≤ k ≤ N +1 as shown in Fig. 2.1. Note that the first and last points lie outside
the interval of interest and that the endpoints of the desired interval do not appear
on the list of points. Letting uk approximate u(xk), the discretized equation at the
interior points is then

u′′(xk) ≈
uk−1 − 2uk + uk+1

h2
= fk = f(xk), for k = 1, . . . , N,

up to an error of O
(
h2
)
. To approximate the boundary condition at x = 0 we use

u(0) =
u(h/2) + u(−h/2)

2
+O

(
h2
)

and u′(0) =
u(h/2)− u(−h/2)

h
+O

(
h2
)
,
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yielding the finite-difference approximation to boundary condition Eq. (2.1):

(2.2)

(
α0

2
− 1

h

)
u0 +

(
α0

2
+

1

h

)
u1 = ϕ0

and a similar approximation for the right boundary condition. In the case of a Dirich-
let boundary condition at x = 0, this boundary condition is replaced by 1

2 (u0 + u1) =
ϕ0. A standard way to handle the point u0 is to solve Eq. (2.2) for u0 in terms of u1
and thus eliminate u0 from the system. Instead, we choose to include this equation
in our larger system of equations.

Fig. 2.1: Discretization of the interval [0, ℓ] using ghost points.

Assembling the equations for the second derivatives and the boundary conditions
into matrix–vector form, we define the vectors

(2.3) u = (u0, u1, . . . , uN+1)
T
, f = (f0, f1, . . . , fN+1)

T
, and ϕ = (ϕ0, ϕL)

T
,

as well as the N × (N + 2) interior Laplacian matrix

(2.4) Lint =
1

h2


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

 ,

the 2× (N + 2) boundary condition matrix

(2.5) MBC =


(
α0

2
− 1

h

) (
α0

2
+

1

h

)
· · · 0 0

0 0 · · ·
(
αℓ

2
+

1

h

) (
αℓ

2
− 1

h

)
 ,

and the N × (N + 2) interior projection matrix

(2.6) Pint =
(
0N×1 IN 0N×1

)
,

where IN is the N -dimensional identity matrix and 0M×N is an (M×N)-dimensional
matrix of all zeros. The matrices Lint and Pint are linear maps from approximation
of Ψ defined on the extended grid xext = {x0, . . . , xN+1} to the approximation of the
PDE defined on the interior grid xint = {x1, . . . , xN}. This allows us to discretize
the second derivative terms as

(2.7) Lintu = Pintf ,

and the boundary conditions as

(2.8) MBCu = ϕ.

We can then combine these into a single system of N+2 equations in N+2 unknowns

(2.9)

(
Lint

MBC

)
u =

(
Pint

02×(N+2)

)
f +

(
0N×2

I2

)
ϕ.
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We make three brief remarks on this approach. First, we note that the more
common technique is to solve the discretized boundary condition equations for u0
and uN+1 in terms of u0 and uN and thereby reduce the number of unknowns to
N . We choose not to do so for two reasons: one is that it makes implementing non-
homogeneous boundary conditions slightly more straightforward in time-dependent
problems, and the other is that it makes the approach more similar to how we handle
boundary conditions using Chebyshev discretization. Second, the null space of the ma-
trix Lint mimics that of the second derivative: it consists of vectors v with vn = an+b
and is two-dimensional. Third, ghost points have an important advantage over the
standard on-point discretization when enforcing Neumann or Robin boundary con-
ditions. The simplest way to discretize the boundary condition with second-order
accuracy at the boundary is to approximate du

dx

∣∣
x=0

using a one-sided difference in-
volving the values u0, u1, and u2, and similarly at the right boundary. Solving the
two discretized boundary conditions eliminates the values of u0 and uN+1 from the
system, leaving a system of N unknowns. The resulting finite-difference matrix is not
symmetric, while the differential operator which it approximates is, of course, self-
adjoint. The ghost point discretization, by contrast, preserves self-adjointness (after
the two ghost points are first eliminated from the system). We will return to this
topic after discretizing the Laplacian on the quantum graph.

This scheme extends straightforwardly to the quantum graph. Consider the Pois-
son problem

△Ψ(x) = f(x) meaning ψ′′
m(x) = fm(x) on em for 1 ≤ m ≤ |E|(2.10a)

ψi(vn) = ψj(vn),∀ei, ej ∈ Vn, i.e., continuity,(2.10b) ∑
em∈Vn

wmψ
′
m(vn) + αnΨ(vn) = ϕn or Ψ(vn) = ϕn for 1 ≤ n ≤ |V| .(2.10c)

Each edge em is discretized using the ghost-point formulation, usingNm+2 discretiza-
tion points to define xext

m , and a mesh size hm = ℓm/Nm, generating a (Nm+2)×Nm

matrix L
(m)
int of the same form as matrix (2.4), and a matrix P

(m)
int of the same di-

mension of the form as matrix (2.6). Thus letting Nint =
∑|E|

m=1Nm be the total
number of interior discretization points and Next = Nint + 2|E| be the total number
of discretization points including boundary points, this discretization has resulted in
Next unknowns arranged in a single vector as

ψ =

 ψ(1)

...
ψ(|E|)

 , where ψ(m) =


ψ

(m)
0
...

ψ
(m)
Nm+1

 .

The vector f is assigned similarly, and the vector of nonhomogeneous boundary terms

is ϕ =
(
ϕ0, . . . , ϕ|V|

)T
. Enforcing the continuity condition (2.10b) at the vertex vn

requires (dn − 1) rows and the Robin-Kirchhoff condition (2.10c) vertex vn involves
the 2dn adjacent discretization points in one row. The derivative and function values
of the vertex are approximated to second order using a straightforward generalization
of the reasoning that leads to Eqs. (2.2) and (2.5). Altogether, these form a matrix
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M
(n)
VC of dimension (2dn)×Next. We let

(2.11) LVC =

(
Lint

MVC

)
=



L
(1)
int

. . .

L
(|E|)
int

M
(1)
VC
...

M
(|V|)
VC


,

and

(2.12) P0 =

(
Pint

02|E|×Next

)
=


P

(1)
int

. . .

P
(|E|)
int

02|E|×(Next)

 .

We also define and define the nonhomogeneity matrix MNH in two steps. First define
a matrix M of size 2|E| × |V| such that

M(i, j) =

{
1 If the jth Neumann-Kirchhoff condition is enforced by row i of M,

0 otherwise

and then define

(2.13) MNH =

(
0Nint,|V|

M

)
.

This assigns the appropriate entry of the nonhomogeneous term ϕ to the correct row
of the matrix enforcing the vertex conditions. With these matrix definitions, the
problem can be represented in the compact form

(2.14) LVCψ = P0f +MNHϕ.

We introduce some notation to simplify our discussion of the numerical problems
addressed below. The matrices Pint and Lint, of dimension Nint × Next, represent
linear maps from the function space Fext, of functions defined on the extended grid
xext, to the function space Fint, of functions defined on the interior grid xint. Of
course, Fext = RNext and Fint = RNint , but simply thinking of these spaces merely as
high-dimensional Euclidean spaces neglects the meaning to which we have assigned
the elements of each space. Further, we denote by Fext

ϕ the set of functions in Fext

which, in addition, satisfy the discretized boundary conditions represented by the
final 2|E| rows of system (2.14). Note that if ϕ ̸= 0, i.e., for nonhomogeneous vertex
conditions, then Fext

ϕ is an affine space of dimension Nint, while for ϕ = 0, Fext
0 is a

linear vector space of dimension Nint. Thus the first Nint rows of Eq. (2.14) use the
points from xext to approximately evaluate the underlying Laplace equations at the
points in xint, while the remaining 2|E| rows ensure that the solution lies on Fext

ϕ .
In what follows, we will apply similar reasoning to discretize other problems on the

quantum graph. As above, we apply the differential equations at the interior points
and supplement these equations with 2|E| additional equations representing the vertex
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conditions, which, together, suffice to specify a unique solution. In addition to the
matrices LVC and P0 defined in Eq. (2.11) and (2.12), we will also need

(2.15) L0 =

(
Lint

02|E|×Next

)
and PVC =

(
Pint

MVC

)
.

More generally, if Bint is any matrix of the same dimension of Lint and Pint, then we
will define

(2.16) B0 =

(
Bint

02|E|×Next

)
and BVC =

(
Bint

MVC

)
.

In practice, we will construct such a matrix Bint as a linear combination of Lint and
Pint. Such examples arise in constructed time-stepping algorithms for evolutionary
PDE in Secs. 2.4.2 and A.2.

We return here to the reasoning for choosing a discretization using ghost points,
which comes from an attempt to maintain the self-adjointness of the Laplacian after
discretizing. Suppose that, instead of including the vertex conditions as part of an
extended linear system, we first use them to eliminate the function values at the ghost
points, resulting in a smaller linear operator represented by a matrix A. In the case of
problem (2.1), using ghost points results in a symmetric matrix A, while the matrix
A that results from using second-order one-sided differences is asymmetric.

We now consider the discretization of the Laplacian on a quantum graph subject
to the vertex conditions (1.1) and (1.2). If all edges are discretized with the same
stepsize h, the discretization matrix constructed above is symmetric. However, choos-
ing all discretization lengths to be equal may be impossible or inconvenient. In that
case, we may measure the magnitude of the asymmetry by considering the largest
element, in absolute value, of the asymmetric part 1

2

(
A−AT

)
. Assume that edge

em is discretized with a stepsize hm = h + δm with δm = O(δ) ≪ h. Then using
one-sided centered differences introduces terms of O( 1

h2 ) into the asymmetric part of
A. By contrast, using ghost points introduces terms of O( 1

h2 · δ). Therefore, if all
the discretization lengths hm are roughly equal, the non-symmetric part of A will
be significantly smaller so that the matrix A is “more symmetric.” Since A is not
symmetric, we cannot guarantee that all of our eigenvalues are purely real as for the
underlying differential operator.

An example. To demonstrate the structure of the discretized Laplacian matrix,
we consider a lollipop graph consisting of two vertices and two edges shown in Fig. 2.2,
the edge e1 points from v1 to v2 and the edge e2 points from v2 to itself. We have
chosen a coarse discretization with N1 = 4 and N2 = 8 discretization points on the
two edges. The interior points of the discretization and the vertices are shown in the
figure, but not the ghost points. The figure also shows the structure of the nonzero
entries of the matrix LVC. The matrix MNH is 16× 2 and is nonzero in the positions
(13, 1) and (14, 2). Numerical convergence is demonstrated for an example Poisson
problem in Sec. A.1.2 of the appendix.

2.1.2. Chebyshev discretization. To achieve spectral accuracy, QGLAB al-
lows for discretization using a method based on Chebyshev polynomials due to Driscoll
and Hale called rectangular collocation [34]. Further details necessary to accurately
implement this method are described by Xu and Hale [80]. This method, based on
a non-square differentiation matrix, allows for the straightforward implementation of
non-trivial boundary conditions. To introduce the idea behind this method, we again
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Fig. 2.2: (a) The lollipop graph with interior discretization points. (b) The structure
of the nonzero entries in the matrix LVC, the Laplacian matrix extended with vertex
conditions.

consider the Robin problem on a line segment defined in Eq. (2.1). Consider the
exterior grid xext given by the N + 2 Chebyshev points of the second kind,1

(2.17) xextk =
ℓ

2

(
1− cos

(
kπ

N + 1

))
, k = 0, 1, . . . , N,N + 1.

We adapt the notation of Eq. (2.3) to define the vectors u, f , and ϕ on the dis-
cretization points defined in Eq. (2.17). The main observation motivating rectangular
collocation is that applying a second derivative matrix defined over a finite space of
polynomials should reduce the order of that space by two, naturally leading to ma-
trices of size N × (N + 2). This is realized by first operating on the vector u with
the standard (N +2)× (N +2) Chebyshev derivative matrix D2 and then resampling
these polynomials onto the interior grid xint consisting of Chebyshev points of the
first kind

(2.18) xintk =
ℓ

2

(
1− cos

(
(2k − 1)π

2N

))
k = 1, 2, . . . , N.

As in the finite-difference discretization described above, we have defined exterior
and interior grids xext and xint, where the approximate solutions are ultimately defined
on xext, but derivatives, and thus approximations to the differential equations, are
evaluated at the points of xint. In contrast to the finite difference case in which
xint ⊊ xext, the two grids, in this case, are disjoint sets. Further, note that the
endpoints of the interval, rather than ghost points, here are given as the first and last
points of the exterior grid xext.

Resampling is a linear operation and is represented by an N×(N+2)-dimensional
barycentric resampling matrix Pint whose construction uses the barycentric interpo-
lation formula proposed in [19] and is the basis of the Chebyshev implementation
of generic boundary value problems in Chebfun. Given the set of points xext =

1The Chebyshev points are defined in a slightly nonstandard way so that the coordinates in the
vector x increase with increasing values of k.
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xext
0 = 0 xext

1 xext
N xext

N+1 = `

xint
1 xint

2 xint
N!1 xint

N

Fig. 2.3: Discretization of the interval [0, ℓ] using a grid xext of Chebyshev points of
the second kind (in blue) and a grid xint first kind Chebyshev points (in red).

{xextk }N+1
k=0 , the barycentric weights are

(2.19) wk =

N+1∏
l=0
l ̸=k

(xextk + xextl )−1, k = 0, . . . , N + 1.

These are used to construct a unique interpolating polynomial,

(2.20) pN+1(x) =

∑N+1
k=0 (wk/(x− xextk ))fk∑N+1
l=0 (wl/(x− xextl ))

,

which interpolates the set of data points {(xextk , fk)}N+1
k=0 . The polynomial is evaluated

at both {xextk }N+1
k=0 and {χk}Nk=1 so that the barycentric resampling matrix is given

by

(2.21) (Pint)j,k =

 wk

xint
j −xext

k

(∑N+1
l=0

wl

xint
j −xext

l

)−1

xintj ̸= xextk ,

1 xintj = xextk ,

and satisfies

(2.22) pN+1(x
int) = Pint pN+1(x

ext).

The barycentric resampling matrix efficiently and stably evaluates an interpolating
polynomial defined on a given set of points (in this case, on Chebyshev points of the
second kind) at a different set of points (in this case Chebyshev points of the first
kind). A more generalized construction is given by Driscoll and Hale in [34, Sec. 3.1].

Putting this all together, the product

(2.23) Lint = PintD
2

defines a N × (N + 2) differentiation matrix. The right-hand side of the differential
equation (2.1) must be resampled to the same set of points, so the differential equation
is discretized by the N equations Lintu = Pintϕ, leaving two more equations to define
the boundary conditions of Eq. (2.1). These may be compactly rewritten as

MBCu =

(
ϕ0
ϕL

)
,

where MBC is a matrix of size 2× (N +2) conveniently expressed using unit vectors

(2.24) MBC =

(
eT1D+ α0e

T
1

−eTN+2D+ αLe
T
N+2

)
.
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This matrices Lint and Pint are dense, in contrast to the equivalent matrices in the
uniform discretization, defined in Eq. (2.5), which are banded. With that, we have
constructed all the necessary elements to reinterpret Eq. (2.9) as a spectral collocation
of Eq. (2.1).

It remains to extend this construction to the Poisson problem on the quantum
graph, given in Eq. (2.10). Letting xext

(m) and xint
(m) be the be, respectively, the extended

discretization vector and the interior discretization vectors on edge em, then these are
concatenated, respectively, into vectors xext and xint on which the space Fext and Fint

are defined.
Defining the matrices LVC, P0, and MNH in Eq. (2.14) is straightforward once

we construct the submatrix M
(n)
VC defining the discretized vertex condition (2.11) and

(2.12), extending the construction in (2.24). Fig. 2.4 shows a coarse discretization
of the example shown in Fig. 2.2, in which the blocks defining the second derivative
are dense, as are the rows defining the Robin-Kirchhoff vertex condition, whereas the
rows enforcing continuity on the boundaries contain only two nonzero entries.
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Fig. 2.4: (a) The lollipop graph, shown with interior discretization points in the
Chebyshev discretization. (b) The structure of the nonzero entries in LVC, the Lapla-
cian matrix extended with vertex conditions. (c) The structure of P0, the barycentric
resampling matrix extended with zeros.

An early version of this Chebyshev discretization method was used in [12] to
calculate the eigenvalues and eigenvectors of the related problem of a Laplacian on
an interval perturbed by a large number of delta function potentials.

2.2. Numerical and Symbolic Eigenproblems. Following the steps used
above to discretize the Poisson problem leads to a discretized form of the eigenvalue
problem (1.6)

(2.25) LVCu = λP0u

in both the finite difference and Chebyshev discretizations. SinceP0 is not the identity
matrix and is singular, this is a generalized eigenvalue problem. MATLAB has two
built-in solvers for eigenvalue problems, eig and eigs, but only the latter is defined
for generalized eigenvalue problems. QGLAB has overloaded the eigs command so
that [d,v]=G.eigs(m) returns the m eigenvalues of the smallest absolute value. Its
use on a Y-shaped graph with Dirichlet conditions at the ends of the two shorter edges
is shown in Fig. 2.5. QGLAB’s plotting features are described in Sec. 3.3.1.
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Fig. 2.5: Four eigenfunctions of a Y-shaped quantum graph.

(a) (b)

Fig. 2.6: (a) A standing wave of cubic NLS on a dumbbell graph with Λ = −1. (b) A
standing wave on a spiderweb graph with Λ = −1.

The secular determinant, described above, is a function Σ(k) whose zeros kn
correspond to eigenvalues −k2n of the Laplacian operator. While not as powerful
or full-featured as Mathematica and Maple, MATLAB’S Symbolic Math Toolbox can
manipulate and simplify complex exponentials and trigonometric functions sufficiently
to construct Σ(k) and simplify it to a form that we can typeset and plot. QGLAB
has implemented the calculation of the secular determinant for the boundary con-
ditions (1.2) with wj ≡ 1 and for Dirichlet boundary conditions using a call of the
form f = G.secularDet, described in detail in the dissertation [26]. This provides
an independent check on the numerical calculation of eigenvalues for the discretized
problem. Applying this routine to the graph shown in Fig. 2.5 yields the symbolic
secular determinant

Σ(k) =
16

3
sin

k

2

(
1− sin2

k

2

)(
1− 9 sin2

k

2
+ 12 sin4

k

2

)
whose zeros are consistent with the numerically determined eigenvalues.

2.3. Nonlinear Solvers, Continuation, and Bifurcation Algorithms. Af-
ter discretizing the spatial derivatives, QGLAB implements the Newton-Raphson
method to solve for standing wave solutions of the stationary NLS (1.9). Two ex-
amples of such solutions are shown in Fig. 2.6.

Solutions to Eq. (1.9) do not occur at isolated points but along one parame-
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ter families that, away from singularities, can be parameterized by the frequency
Λ. Pseudo-arclength continuation provides a way to follow this family as it traces a
smooth path. It is due originally to Keller [53] and is well summarized in the text-
book of Nayfeh and Balachandran [65], who cite many additional contributors to the
method. Importantly, this method allows one to continue the curve around a fold
singularity, and other techniques allow one to detect branch points, which include
both pitchfork and transcritical bifurcations, and to determine the direction at which
new families of solutions branch off from the branch being followed; see also Gov-
aerts [48]. More rudimentary bifurcation calculations were performed in our previous
works [18, 47, 60].

Fig 2.7 shows the so-called necklace graph, similar to an example in Ref. [20],
except that all solutions are calculated on the same compact domain. The cited paper
allows the numerical domain to widen as the amplitude decreases, demonstrating
the ground state scaling at small amplitude. However, because it does not employ
continuation and branch-switching, it does not demonstrate the relationships between
the branches.
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Fig. 2.7: (a) Layout of the necklace graph, with 54 “strings” and 54 “pearls.” (b)
Partial bifurcation diagram. (c) Solutions along the color-coded branches with fre-
quency Λ ≈ −4.

2.4. Time-stepping for evolution problems posed on a quantum graph.
In this section, we consider two methods for approximating a function Ψ(t) ∈ H1(Γ)
that evolves according to the PDE

(2.26)
∂Ψ

∂t
= µ△Ψ+ F (t,Ψ),
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subject to a time-dependent version of vertex condition (2.10c), where ϕn is allowed
to vary in time, and such that F (t,Ψ) contains any terms involving a potential or non-
linearity. Depending on the constant µ, which could be real, imaginary, or complex,
this formulation includes heat, Schrödinger, Ginzburg-Landau, and scalar reaction-
diffusion equations.

We may consider the discretized evolution equation and vertex conditions as a
system

Pint
dψ

dt
= µLintψ +PintF(t,ψ),(2.27a)

MVCψ(t) = MNHϕ(t),(2.27b)

where F(t,ψ) is considered as a vector-valued function F : R × Fext → Fext, which
must then be projected onto Fint by Pint. Here, Eq. (2.27a) discretizes the differential
equations on Fint, while Eq. (2.27b) enforces the vertex conditions, ensuring that
the solution remains in Fext

ϕ(t) at all times. This is a system of differential-algebraic
equations since it contains some components that are differential equations and others
that are algebraic.

In QGLAB, we have implemented two approaches to solve (2.28), described below.
First, we combine the two parts of system (2.27) into a standard DAE form and pass
it to appropriate built-in MATLAB ODE solvers. In the second approach, we adapt
a Runge-Kutta (RK) algorithm to work directly with system (2.27). Because the
ODE system derived in this manner is stiff and nonlinear, we use an implicit-explicit
(IMEX) RK scheme.

The methods described in this section have been implemented only for scalar
equations with a single time derivative. In the numerical examples of Sec. A.2, we
also include a simple implementation of a leapfrog method to solve a nonlinear wave
equation with second-order time derivatives.

2.4.1. DAE formulation for use with MATLAB’s ODE suite. The two
components of system (2.27) may be combined into a single equation by first multi-
plying Eq. (2.27b) by µ and using the vertex conditions to extend the Lint operator,
while the Pint operator is extended with zeros, yielding a system of the form

(2.28) P0
dψ

dt
= µLVCψ +P0F(t,ψ)− µMNHϕ(t).

Since the final 2|E| rows of P0 are identically zero, it is singular, and Eq. (2.28) is
an index-one DAE. The MATLAB ODE solvers ode23t and ode15s can solve such
DAEs, given in the general form

M(t,ψ)ψ̇ = f(t,ψ),

in which M, the so-called mass matrix given by P0 in Eq. (2.28), may be singular.
We have defined two solvers qgde23t and qgde15s that, in turn, call the two

similarly named MATLAB solvers. The first uses an implicit trapezoidal rule and
is recommended for problems of moderate stiffness where the user wishes to avoid
numerical damping. The second uses the Klopfenstein-Shampine family of numeri-
cal differentiation formulas of orders one through five and is recommended for highly
stiff problems [61, 76]. Both methods adaptively choose the step size based on user-
specified tolerances, although the user may select a sequence of times to output the
solution. As such, it is difficult to measure their order of convergence through nu-
merical tests. However, we may use proxies such as the numerical maintenance of
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conserved quantities that are necessary but insufficient for this purpose. For moder-
ately stiff problems, such as cubic NLS, qgde23t performs much faster. Figure 2.8
shows the collision of a soliton with a vertex on a star graph with both so-called bal-
anced and unbalanced Kirchhoff conditions, as considered in Ref. [52]. Here, balance
is defined by a restriction on the weights wj in Eq. (1.2) with αn ≡ 0. The soliton
passes through the balanced vertex but is largely reflected by the unbalanced vertex.
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Fig. 2.8: Collision of an NLS soliton with the vertex of a star graph. (Left) Initial
time. (Center) Final time, balanced graph. (Right) Final time, unbalanced graph.

For a stiff problem, such as the Fisher-KPP equation,

ut = µ△u+ u(1− u),

the stiff solver qgde15s proves more efficient. A computation on a honeycomb graph
is shown in Fig. 2.9.
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Fig. 2.9: Solution of the KPP equation, with the initial condition on the left and the
solution at t = 12 on the right.

2.4.2. Building time-stepping algorithms from scratch. The methods de-
scribed above run very slowly because problem (2.26) is stiff and nonlinear. The
vertex-condition constraints make the straightforward application of standard meth-
ods somewhat difficult. We here construct a method that overcomes these problems.

The main issues in constructing a time-stepping algorithm for an evolutionary
PDE defined on a quantum graph using the spatial discretization described in Sec. 2.1
can be illustrated using Euler methods. These ideas then extend straightforwardly to
Runge-Kutta algorithms. To derive these methods, we first discretize in time, fixing
a time step h, defining a sequence of discretization times tn = nh, and denoting by
ψn(x) the approximate solution to Eq. (2.26) at t = tn.

The forward Euler method is then

ψn+1 = ψn + h (α△ψn + f(ψn))
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subject to vertex conditions on ψn+1. After we discretize in space and enforce the
vertex conditions, this yields a time-stepper

(2.29) PVCψn+1 = P0 · (ψn + hf (ψn)) + hαL0ψn.

The matrix PVC on the left means this method is implicit, but the implicitness is
linear and does not require Newton iterations. However, the Laplacian on the right
is evaluated explicitly, imposing a step-size restriction, so we do not consider this a
practical method.

Similarly, the backward Euler method is

ψn+1 = ψn + h (α△ψn+1 + f(ψn+1))

subject to vertex conditions on ψn+1. After we discretize in space and enforce the
vertex conditions, this yields a time-stepper

(2.30)

[
Pint − hαLint

MVC,

]
ψn+1 − hP0f(ψn+1) = P0ψn.

This method is fully implicit. It has no time-step restrictions but is implicit in a non-
linear term, requiring Newton iterations at each step. The simplest generalizations of
the backward Euler method to Runge-Kutta schemes are so-called diagonally implicit
(DIRK) schemes. These require several substeps that require the solution of equations
similar to Eq. (2.30), which are then combined to produce a higher-order approxima-
tion to ψ(tn + h). We have implemented Nørsett’s three-stage fourth-order DIRK
method as the quantum graph method qgdeN34DIRK. We have found it performs very
slowly because it must solve a nonlinear equation at each substep.

To resolve this difficulty, we may treat the stiff term involving the Laplacian
implicitly and the nonstiff term involving the nonlinearity explicitly. This idea was
introduced for Runge-Kutta methods, which include the Euler method, by Ascher et
al. [9]. There exist several such implicit-explicit (IMEX) Euler methods, including
one they call forward-backward Euler (1, 1, 1):

ψn+1 = ψn + h (α△ψn+1 + f(ψn))

subject to vertex conditions on ψn+1. After we discretize in space and enforce the
vertex conditions, this yields a time-stepper

(2.31)

[
Pint − hαLint

MVC

]
ψn+1 = P0 · (ψn + hf(ψn)) .

This method combines the best aspects of the forward and backward Euler methods.
Moving the operator hαLint to the left-hand side resolves the stiffness issue without
requiring a small step size h. Keeping the nonlinear term on the right-hand side
eliminates the need to solve a nonlinear equation on each step. However, the method
is only first order in time, requiring small time steps for accuracy. We therefore turn
to higher-order Runge-Kutta methods.

Ref. [9] applies similar ideas to derive IMEX Runge-Kutta methods, which at
each stage handle the stiff part of the evolution equation implicitly and the nonstiff
part explicitly. QGLAB comes with a four-stage third-order Runge Kutta method
qgdeSDIRK443, based on the method denoted (4, 4, 3) in [9]. As described in Sec. A.2.3
of the appendix, this final method solves the example shown in Fig. 2.8 faster than
any other option.
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3. Understanding the MATLAB implementation.

3.1. MATLAB’s digraph class. The MATLAB numerical computing environ-
ment provides software tools for working with undirected and directed graphs. The
main component of QGLAB is a class qg which builds upon MATLAB’s digraph class
used for defining directed graph objects. We illustrate the construction of a directed
graph with a simple example, in which we initialize a digraph object G composed of
four vertices and seven edges:

1 source =[1 1 1 1 2 2 3 ] ; t a r g e t =[2 2 3 4 1 3 3 ] ;
2 G = digraph ( source , t a r g e t ) ;
3 p lo t (G) % Plot c a l l e d with add i t i ona l f i gu r e−f o rmatt ing

opt ions

The vector source specifies the initial vertices of the edges, and the vector target

specifies the final vertices. The resulting graph is shown in Fig. 1.1. The digraph
object G contains two fields: G.Edges and G.Nodes, each is in the form of a table, a
MATLAB array type that holds column-oriented data, each column stored as a vari-
able. The methods G.numnodes and G.numedges return the number of vertices (nodes)
and edges, respectively. The array of edges contains one variable G.Edges.EndNodes,
an array of size |E| × 2 whose two columns contain, respectively, the indices of the
source vertices and the target vertices. The nodes table is initially empty. We add
fields to the two tables to create the quantum graph class.

3.2. Understanding the quantum graph class and initializing a quan-
tum graph object. To set a concrete example, the graph shown in Fig. 2.2 and the
associated figure were generated with the code:

4 source =[1 2 ] ; t a r g e t =[2 2 ] ; L=[4 2∗ pi ] ; nx=[4 8 ] ;
5 G=quantumGraph ( source , target , L , ’ nxVec ’ , nx )

The last line initializes a qg object. The three required arguments source, target,
and L must be entered in that order. The last, nx, is an optional argument. If nx is
a vector of length G.numedges, it defines the number of interior points on each edge.
If it is a scalar, the constructor will assign nx points per unit length to each edge,
rounding if necessary.

There exist several other optional arguments a user may set, which will be dis-
cussed below, some of which will be set to default values if not specified in the func-
tion call. Optional arguments are listed in the function call after required argu-
ments using a key/value syntax. In older releases of MATLAB, this is entered as G=
quantumGraph(source,target,L,’key1’,value1,’key2’,value2) while more recent releases
allow the more compact syntax G=quantumGraph(source,target,L,key1=value1,key2
=value2) In the interest of compatibility, we use the former syntax in this document.
Complete instructions, including all the optional initialization arguments, are pre-
sented in Sec. B.

The above commands return the following in the MATLAB command window:

6 G =
7

8 QuantumGraph with p r op e r t i e s :
9

10 d i s c r e t i z a t i o n : ’ Uniform ’
11 wideLaplacianMatrix : [ 12 x16 double ]
12 i n t e rpo l a t i onMat r i x : [ 12 x16 double ]
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13 discreteVCMatrix : [ 4 x16 double ]
14 nonhomogeneousVCMatrix : [ 16 x2 double ]
15 der iva t i v eMat r ix : [ 16 x16 double ]

The most important property of this quantumGraph object is the property that spec-
ifies the quantum graph itself and its discretization. It is not visible in the above
listing because it has been declared a private property of the object and can not be
directly accessed by the user, only acted upon by class methods. We will discuss it
last. The remaining properties are publicly viewable but can only be set by class
methods. They are:
• discretization may take three values, ‘Uniform’, ‘Chebyshev’, or ‘None’. If

the property nx is left undefined, then this defaults to ‘None’. Otherwise, it
defaults to ‘Uniform’.

• wideLaplacianMatrix The rectangular Laplacian matrix Lint defined in Eq. (2.11)
for either the uniform or Chebyshev discretization.

• interpolationMatrix The interpolation or resampling matrix Pint as defined in
Eq. (2.12) for either the uniform or Chebyshev discretization.

• discreteVCMatrix The matrix MVC defining the discretization of the vertex con-
ditions defined in Eq. (2.11) and (2.12) for either the uniform or Chebyshev
discretization.

• nonhomogeneousVCMatrix The matrix MNH defined in Eq. (2.13) which maps non-
homogeneous terms in the vertex condition to the appropriate row.

• derivativeMatrix This square matrix approximates the first derivative on each
edge. Unlike the matrices defined above, it is not a fundamental feature
of QGLAB. It is used by functions that compute solutions’ energy and mo-
mentum functionals of solutions, plot branches of solutions in continuation
problems, and monitor conservation laws of time-dependent PDE.

The property qg is a MATLAB directed-graph object with additional fields nec-
essary to define a quantum graph, consisting of a Nodes table and an Edges table.
Because qg is a private property, viewing these tables using the syntax G.qg.Nodes

and G.qg.Edges is disabled. Instead, Nodes and Edges quantumGraph methods have
been written that return each of these tables, so we may view the tables using the
syntax G.Nodes and G.Edges, as in this code listing. In addition, a method exists
that returns each default table column; for example, the Robin coefficients can be
returned by G.robinCoeffs. We examine the node data, which has three fields

16 >> di sp (G. Nodes )
17 rob inCoe f f nodeData y
18

19 0 0 NaN
20 0 0 NaN

The fields are:
• robinCoeff The Robin coefficients αn used to define the vertex condition (1.2). If

unset, it takes the default value of zero, reducing the boundary condition to
the standard Neumann-Kirchoff condition. To implement a Dirichlet bound-
ary condition (1.3), this coefficient is set to not-a-number (NaN).

• nodeData When the boundary conditions (1.2) and (1.3) are replaced with their
nonhomogeneous generalizations, this field is used for the boundary data.

• y contains the value of ψ at the vertex, set to NaN on initialization.
We then examine the edges table, which has seven required fields (six for the

Chebyshev discretization):
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21 >> di sp (G. Edges )
22 EndNodes Weight L nx x y dx
23

24 1 2 1 4 4 { 6x1 double } { 6x1 double ] 1
25 2 2 1 6 .2832 8 {10x1 double } {10x1 double } 0 .7854

The fields are:
• EndNodes This |E| × 2 array the initial and final vertices of the edges, i.e., the

content of the input variables source and target.
• Weight The weight wj in vertex condition (1.2). Defaults to one if unset.
• L The array of edge lengths.
• nx The number of discretization points on the interior of each edge. If a scalar nx

is passed to the qg command, the vector nx is set when the graph is built.
• x The (nx + 2) discretization points on each edge, including ghost points for the

uniform discretization and vertices in the Chebyshev discretization.
• y The value of ψ at the discretization points, initially set to NaN.
• dx The discretization step size of each edge. (Uniform discretization only.)

Another optional input is a separate MATLAB program that defines coordi-
nates for plotting output. After defining the plot coordinates in the file labeled
lollipopPlotCoords.m, the coordinates can be added to the existing graph G by
passing its function handle to the method G.addPlotCoords(@lollipopPlotCoords) af-
ter G has been created, or else, can be included in the constructor with the command:

G=quantumGraph(sources,targets,L,’nxVec’,nx,’PlotCoordinateFcn’,@lollipopPlotCoords)

The plot coordinates are stored in fields x1 and x2 that are appended to both the
Edges and Nodes tables. The MATLAB plot command has been overloaded so that
G.plot plots the y coordinate over a skeleton of the graph in the x1 and x2 coordinates.
Some graphs, such as those formed from the edges and vertices of a platonic solid, are
best depicted in three space variables. Adding a third plot coordinate x3 is possible
for such cases. If this coordinate exists, then the graph is plotted in three dimensions
with the y coordinated represented by a color scale.

QGLAB includes templates for various commonly studied graphs and a template
syntax that allows the quick creation of such graphs, such as the lollipop and tetrahe-
dron templates used in Sec. 3.3.1. The parameters used to define each template have
default values that can be overridden. A gallery of graph templates is included in the
documentation.

3.3. Basic operations. MATLAB introduced Live Scripts in release 2016a.
A live script is a rich document that includes runnable code and formatted text,
entered with a simple word processor-like interface, and which integrates outputs
including text and graphics, which can be exported to popular formats such as PDF,
HTML, and Microsoft Word. The QGLAB package includes many examples created
as live scripts and exported to HTML. Basic operations are described in the file
documentation/quantumGraphRoutines.mlx.

3.3.1. Function evaluation and plotting. The command to evaluate a func-
tion specified by a function handle, anonymous function, or constant value and as-
signs its value to the edge ej is applyFunctionToEdge. The command titled as
applyFunctionsToAllEdges applies a cell array of functions to all the edges; for ex-
ample, the following sequence of commands defines and plots a dumbbell quantum
graph with the default parameters, plotted in Fig. 3.1(a):
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26 G=quantumGraphFromTemplate ( ’ dumbbell ’ ) ;
27 G. applyFunctionsToAllEdges ({@sin ,@(x ) exp(−(x−2) . ˆ 2 ) ,0} ) ;
28 G. p lo t

(a) (b)

Fig. 3.1: (a) A function defined on the edges of a dumbbell graph. (b) A function
defined on the edges of a tetrahedral graph.

QGLAB also provides some three-dimensional templates, for which the y values
are plotted using false color, as in Fig 3.1(b), where we plot Gaussians on all edges of
a regular tetrahedron using the commands:

29 Phi=so l idTemplates ( ’ t e t rahedron ’ ) ;
30 f=@(x ) ( exp ((−10∗(x− .5) . ˆ 2 ) ) ) ;
31 Phi . applyFunctionsToAllEdges ({ f , f , f , f , f , f }) ;
32 Phi . p l o t ;

Finally, on some graphs with many edges, plots in three dimensions become a
confusing tangle of curves, and it is more illuminating to visualize them in false color,
using an overloaded pcolor command, demonstrated in Sec. B.

3.3.2. Getting data on and off the graph. The discretized Poisson prob-
lem (2.14) and the discretized eigenvalue problem (2.25), and other discretized prob-
lems described below, are all posed in terms of unknown column vectors. By contrast,
this data is stored edge by edge in the quantumGraph object in G.qg.Edges.y. The
command graph2column creates such a column vector from the data in graph G, while
the command column2graph loads the data from a column vector onto the edges of
the graph including the vertices (Chebyshev) or ghost points (Uniform). Under the
uniform discretization, the command also interpolates the data to the vertices. The
column2graph command is also called by the command G.plot(y) to plot the con-
tents of the vector y over the skeleton defined by the graph.

3.3.3. Other important overloaded functions. Many methods from MAT-
LAB’s directed graphs class have been overloaded so that, for example, a call to
G.numnodes returns the number of nodes and G.numedges the number of edges. An
overloaded spy command (along with additional formatting) was used to visualize
the Laplacian matrix in Figs. 2.2 and Fig. 2.4. Overloaded versions of the norm and
dot commands are used frequently throughout the package. Sec. B gives a complete
listing of the functions.
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4. Conclusions. QGLAB is a robust and versatile MATLAB package for the
automated computational solution to spectral accuracy of linear and nonlinear prob-
lems on Quantum Graphs. It may be used to quickly build graph models, analyze
their spectrum, compute nonlinear bifurcations, and solve evolutionary equations. Al-
gorithms for constructing graphs, solving problems on them, and manipulating and
visualizing solutions are implemented at a high level, hiding most details of the imple-
mentation from the end user and allowing them to focus on the mathematical problem
and not the numerical and algorithmic details.

Linear and nonlinear PDEs on quantum graphs remain a vibrant area of analysis
in spectral geometry in which the interaction of geometry, topology, and symmetry
gives rise to diverse mathematical questions [7, 16, 44] with many open problems left
to explore. They arise in models for condensed matter physics [14, 77], they model
dynamics that occur in thin or fiber domains such as carbon nanotubes [40, 55, 56],
they can serve as models for network analysis [66], and they can be used to model
continuum operators on manifolds [51].

Many previously studied problems on combinatorial graphs have analogies on
metric graphs that remain open and where the spectrum of behaviors is likely to be
much richer. For example, the spectral optimization of combinatorial graphs has been
studied in [69], and others have examined how the symmetries of discrete Laplacians
can lead to interesting spectral features such as Dirac points and flat bands [57, 62].
The study of time-dependent evolution equations on quantum graphs remains in its
infancy [37, 52]. QGLAB, which allows the quick setup and numerical analysis of such
problems, is an ideal tool for exploring these problems.
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Supplementary Material

This appendix contains two sections. The first, Section A, is devoted to demon-
strating both the implementation and efficacy of QGLAB on a variety of examples,
including stationary problems—eigenvalue problems, the Poisson equation, and the
computation and continuation of standing waves—in Section A.1 and evolutionary
PDE problems in Section A.2. All the examples are included as live scripts (MAT-
LAB .mlx files) in the directory source/examples. The second part, Sec. B, contains
a complete listing of user-callable function definitions and explicit instructions for their
use.

Appendix A. Extended examples.

A.1. Stationary problems.

A.1.1. Eigenproblems. QGLAB overloads MATLAB’s eigs function, which
computes a finite number of eigenvalues and eigenvectors of the discretized Laplacian
defined by the generalized eigenvalue problem (2.25) defined for either the uniform or
Chebyshev discretization. The eigenfunctions returned are normalized to have unit L2

norm defined over the graph and, if single-signed, to be positive. Basic eigenfunction
calculations are described in detail in the live script starEigenfunctionsDemo.mlx,
which considers a star-shaped graph with three finite edges of lengths

{
3
2 , 1, 1

}
con-

nected to a central vertex, with Kirchhoff conditions at the central vertex and the end
of the longer edge e1 and Dirichlet condition at the remaining two vertices v3 and
v4:

33 LVec=[1.5 1 1 ] ; nX = 40 ; rC = [0 0 nan nan ] ;
34 G = quantumGraphFromTemplate ( ’ s t a r ’ , ’LVec ’ ,LVec , ’nX ’ ,nX, ’

r ob inCoe f f ’ , rC) ;
35 [V, lambda]= e i g s ( Phi , 4 ) ; % Compute 4 e i g enva lu e s

The eigenfunctions are stored as columns of the array V and are plotted in Fig. 2.5,
using, for example, the command G.plot(V(:,1)). The eigenvalues are consistent with
the symbolic secular determinant

Σ(k) =
16

3
sin

k

2

(
1− sin2

k

2

)(
1− 9 sin2

k

2
+ 12 sin4

k

2

)
,

computed using the command G.secularDet, which is plotted in Fig. A.1, along with
the computed values of k =

√
−λ. In particular, the “third” eigenvalue λ = −π2 ≈

−0.9865 has multiplicity two, as this plot shows. In general, a numerical eigenvalue
solver will return two eigenvalues very closely spaced rather than a double eigenvalue.
The graph Γ in this example is symmetric under the interchange of the edges e2
and e3, and thus its Laplacian operator is too. The multiplicity-one eigenfunctions
respect this symmetry, but the multiplicity-two eigenfunctions returned by eigs do
not. The live script contains code that takes appropriate linear combinations of the
two computed eigenvectors to produce eigenvectors that are odd and even with respect
to this symmetry. These are shown in Fig 2.5 above. In that figure, we plot the ground
state eigenfunction and the first three excited states of a Y-shaped quantum graph
with Dirichlet conditions at the ends of the two shorter edges. The two rightmost
images show eigenfunctions that are, respectively, even and odd, with respect to the
interchange of edges e2 and e3. The well-known Mathworks membrane logo is the
ground state of the Laplace operator on an L-shaped region with Dirichlet boundary
conditions. We have adopted an equivalent logo for QGLAB, shown in Fig A.2.
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Fig. A.1: The secular determinant Σ(k), of the Y-shaped graph discussed in the text,
along with the computed values kj =

√
−λj , which sit right on top of the zeros. Also,

note that the second excited state has multiplicity two.

Fig. A.2: The QGLAB logo, the ground state eigenfunction of an L-shaped quantum
graph with Dirichlet conditions at the exterior vertices.

A.1.2. Poisson problems. The method solvePoisson solves the Poisson prob-
lem (2.10). The live script poissonExample.mlx demonstrates this solver on a quan-
tum graph composed of three vertices and four edges, two of which are loops, as
shown in Fig A.3. At the two internal vertices, it satisfies an inhomogeneous Robin-
Kirchhoff condition, while at the one pendant vertex, it satisfies an inhomogeneous
Dirichlet condition:∑

em∈V1

ψ′
m(v1) + Ψ(v1) = 1;

∑
em∈V2

ψ′
m(v1) + Ψ(v2) = 2; Ψ(v3) = 3.

The right hand sides are given by f = {cosx, x, sin 2x, 1} on the four edges. The
following lines summarize the live script, where the variables f and phi are the Poisson
data on the edges and vertices, respectively, and the exact solution can be read off
from the listing:

36 s=[1 1 2 2 ] ; t=[1 2 2 3 ] ; L=[2∗ pi 4 2∗ pi 1 ] ; r ob inCoe f f =[1 1 nan ] ;
nx = 10 ;

37 phi = ( 1 : 3 ) ’ ; % The nonhomogeneous term f o r the ver tex cond i t i on
38 G=quantumGraph ( s , t , L , ’ RobinCoeff ’ , rob inCoe f f , ’ nxVec ’ , nx , ’ nodeData ’

, phi ) ;
39 f = G. applyFunctionsToAllEdges ({@(x) cos ( x ) ;@(x )x ;@(x ) s i n (2∗x ) ; 1} ) ;
40 numer i ca lSo lut i on = G. so lvePo i s s on ( ’ edgeData ’ , f ) ;
41 ps iExact={@(x) (19/2− cos ( x ) ) ; @(x ) (51−45∗x+x . ˆ 3 ) / 6 ; . . .
42 @(x) (−130−3∗ s i n (2∗x ) ) /12 ; @(x ) (−65+80∗x+3∗x . ˆ 2 ) /6} ;
43 exac tSo lu t i on = G. applyFunctionsToAllEdges ( ps iExact ) ;
44 e r r o r=G. norm( exactSo lut ion−numer i ca lSo lut i on ) ;
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This returns a value of error=0.0089, which decreases by approximately a factor
of four to error=0.0022 when we set nx=20, providing empirical evidence of second-
order convergence, as expected. A second live script poissonExampleChebyshev.mlx
changes the third line to set the discretization to Chebyshev and performs two dis-
cretizations, with n=16 and n=32 points per edge. In this case, the errors in the
computed solution are 2.07× 10−8 and 5.93× 10−11, a reduction of about 349 times,
which seems consistent with spectral convergence.

Fig. A.3: The graph used in the Poisson equation example of Sec. A.1.2.

A.1.3. Nonlinear standing waves and bifurcation diagrams.
Computing individual solutions. We begin with an example computing a

single solution to the stationary cubic NLS (1.9) on a dumbbell graph:

45 Phi = quantumGraphFromTemplate ( ’ dumbbell ’ ) ;
46 f c n s = getNLSFunctionsGraph ( Phi ) ;
47 Lambda = −1;
48 f = @( z ) f cn s . f ( z , Lambda) ;
49 M = @( z ) f cn s . fLinMatr ix ( z , Lambda) ;
50 y0 = Phi . applyFunctionsToAllEdges ({0 ,@(x ) sech ( ( x−2) ) ,0} ) ;
51 y = solveNewton ( y0 , f ,M) ; Phi . p l o t ( y )

The function getNLSFunctionsGraph defines the discretized version of the nonlinear
functional and several of its partial derivatives and assigns them to a structure ar-
ray called fcns. By default, this uses the function f(z) = 2z3 from Eq. (1.9). Still,
the user may provide a symbolic function of one variable as an optional argument,
and MATLAB will compute all the required partial derivatives symbolically. The
Newton-Raphson solver that is iterated to solve the system requires both the func-
tional and its linearization with respect to Ψ. These are stored in two fields fcns.f
and fcns.fLinMatrix, which are functions of two inputs z and Lambda. The con-
tinuation algorithm considers Eq. (1.9) as a function of both Ψ and Λ, but in this
first example, we fix Λ = −1 and consider only Ψ as unknown. In lines 4 and 5,
anonymous functions are used to instruct MATLAB to consider them as functions
of Ψ alone. We search for a unimodal solution to Eq. (1.9) with Λ = 1 centered on
the central edge of a dumbbell graph, so we prepare an initial guess in line 6 consist-
ing of a hyperbolic secant centered on the central edge and zeros on the two looping
edges. The solveNewton command finds the standing wave. The result of the plot

command is shown in Fig. 2.6(a).
For graphs with a large number of edges, generating an initial guess with the

approach of line 6 would be impractical, so QGLAB provides a convenient function
applyGraphicalFunction which applies a function to the coordinate functions used
to plot the graph. In Fig. 2.6(b), we find a standing wave on a spiderweb graph, found
in the QGLAB template library, using as an initial guess the function sech (r) where
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r is the Euclidean distance from the central point to a point on the graph as laid out
in two dimensions.

Continuation of solutions. We can learn more about the stationary problem
by considering branches of standing waves and their bifurcations than by computing
individual solutions. Well-established and sophisticated software packages for such
computations include AUTO and MatCont for ODE systems and pde2path for elliptic
PDE [28–30, 79]. The capabilities of QGLAB are much more modest but allow for the
simple setup and solution to basic continuation and bifurcation problems on quantum
graphs.

An extended example on numerical continuation is presented in the live script that
is titled continuationInstructions.mlx, which presents a computation of a partial
bifurcation diagram of the cubic NLS equation on a dumbbell graph in Fig. A.4,
reproducing a figure from [47], which contains far more details and graphs of several
of the solutions at various points on the bifurcation diagram.

(a) (b)

Fig. A.4: (a) A partial bifurcation diagram for the dumbbell graph. The three blue
curves are the continuations of linear eigenfunctions. The red curves were computed
by continuing from branching bifurcations. The green curve was computed by comput-
ing a single large amplitude solution and then continuing it. Branching bifurcations
marked with squares and folds with triangles. (b) The same diagram, plotted in dif-
ferent variables.

This figure comprises nine separately-computed curves, each representing dozens
of solutions to Eq. (1.9). The curves were initialized in three different ways. The
first type, plotted in blue, consists of nonlinear continuations of linear eigenfunctions.
We have plotted three such branches but focus on the branch labeled 1. This branch
represents the nonlinear continuation of the null eigenvector of the Laplacian on this
quantum graph. The value of Ψ is constant on all solutions on this branch, with

(A.1) Ψ =

√
−Λ

2
.

It is straightforward to show that if λ is an eigenvalue of the operator −△, then
branch 1 has a bifurcation point at Λ = −λ/2 [47, 60]. QGLAB automatically com-
putes the direction in which branches fork from bifurcation points, and the diagram
shows two families that emerge from such points. At the points marked A, B, and C,
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Fig. A.5: A partial bifurcation diagram of the stationary NLS equation on a dumbbell
quantum graph with a cubic-quintic nonlinearity.

QGLAB has detected bifurcation points on branch 1, and we have chosen to follow
the first two. The branch that bifurcates from branch A, which seems to intersect
branch 1 transversely, is a pitchfork bifurcation, while the branch that bifurcates from
B tangentially to branch 1 and extends in both directions is a transcritical bifurca-
tion. This last branch itself has a limit (fold) point at E and a pitchfork bifurcation
at D. The final branch, plotted in green, was generated by first computing a single
high-frequency bifurcation with large amplitude pulses on the dumbbell handle and
one ring, saving it to a file, and then continuing that solution.

QGLAB stores all the data for branches, bifurcation points, and individual solu-
tions logically and hierarchically and has routines for retrieving and plotting individual
solutions and curves of solutions so that the user can largely avoid low-level interac-
tions with the data. By default, it plots the frequency of standing waves versus their
power, but it can also plot the energy (1.10), as shown in the right image of Fig. A.4.

The nonlinear term in stationary NLS (1.9) can be changed by simply changing the
definition of f(z) to any analytic function satisfying f(0) = 0 (so that the linearization
at zero remains unchanged and the continuation of linear eigenfunctions from zero can
be easily computed). In the example dumbbellcontinuation35.mlx, we change the
right hand side to f(z) = −2z3 + 3z5 which is defocusing for small values of |z| and
focusing for large values. A partial bifurcation diagram for this system is shown in
Fig. A.5, consisting of three branches that bifurcate from zero in the direction of the
eigenfunctions, albeit with a frequency that initially increases with increasing power
before changing direction and decreasing. The leftmost branch remains constant in
space, and its power increases monotonically along the branch. In contrast, the other
two branches have decreasing power as the frequency decreases past a certain point.

Especially interesting is the branch that bifurcates from the pointA on the middle
branch. This middle branch is the continuation of the first excited eigenfunction,
which has an odd symmetry about the central point on the dumbbell. At this point,
we find a symmetry-breaking pitchfork bifurcation, with two asymmetric branches
related by a reflection symmetry. This asymmetric branch continues to the point B,
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at which point it collides again with the same branch from which it bifurcated at
A and begins retracing its original path. This branch traces out a closed curve in
solution space, with the sign of the perturbation term flipping each time the branch
passes the bifurcation points. Thus, we instructed the continuation program to stop
after a finite number of points on the curve are computed by setting the parameter
maxPoints as described in Appendix B.5.

An advantage of the continuation/bifurcation approach is that it illuminates how
branches relate to each other. This is well illustrated using the example of a “necklace”
quantum graph, also considered by Besse et al. [20]. This graph consists of loops
alternating with single edges. The necklace graph shown above in Fig. 2.7(a) consists
of 54 such alternating pairs, with segments of length 1 and pearls comprised of two
edges, each of length π/2. Fig. 2.7(b) shows a partial bifurcation diagram for the
focusing cubic NLS equation on this graph.

We focus on branch 1 and a few branches arising from bifurcations from this
branch and its descendants. As in the first example, the constant-valued solution on
this branch satisfies Eq. (A.1), and bifurcations occur where the frequency is half of
an eigenvalue of the linear problem. However, this eigenvalue has a geometric mul-
tiplicity of two in this case. In bifurcation theory, the system is said to undergo a
codimension-two bifurcation at this point. QGLAB has not implemented methods for
detecting higher codimension bifurcation points and calculating branches emanating
from bifurcations of codimension two or higher. Such methods exist and are imple-
mented in the packages cited above; an approach that obviates the need to calculate
higher-order normal forms is the deflated continuation method due to Farrell and
collaborators [43].

The double-zero eigenvalue at this bifurcation has two orthogonal eigenfunctions
plotted in Fig. A.6. These may be thought of as the analog of the sine and cosine
modes of the second derivative operator on the circle. While any linear combination
of these two eigenfunctions is also an eigenfunction, we have chosen the two modes so
that one has its maximum at the center of a single strand and the other at the center
of a double strand. The nonlinear standing waves that bifurcate from branch 1 at the
point A do so in the direction of these two eigenfunctions. Close to the bifurcation,
the two solution curves are indistinguishable when plotted in these coordinates but
separate for more negative frequencies. The standard algorithm that QGLAB uses
to detect bifurcations works not by computing all the eigenvalues of the linearization
and counting their eigenvalues, which would be slow, but by efficiently calculating
the sign of the associated determinant using an LU -decomposition and detecting
when it changes. This works efficiently at codimension-one bifurcations but fails
at codimension-two bifurcations like this one. As this would predict, the algorithm
that detects bifurcations fails to find a bifurcation at A and does not compute the
branching direction.

The branches 2 and 3 are calculated by first computing a single standing wave
with frequency Λ = −4 and either a single sech-like hump centered on a string or
two sech-like humps centered on the two edges on the pearl and then continuing the
branches toward the bifurcation point A. Branch 4 bifurcates from branch 3 at the
point B, breaking the symmetry between the two edges of the pearl. By plotting
this bifurcation diagram in the same coordinates as in the right image of Fig. A.4,
we confirm the statement of Ref. [20] that this branch represents the ground state at
large amplitude. At point C, Branch 3 undergoes a second symmetry-breaking bifur-
cation, giving rise to branch 5, on which the two-humped standing wave on the pearl
moves from the center of the pearl’s edges toward either vertex. A similar symmetry
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Fig. A.6: The eigenfunctions corresponding to the smallest nonzero eigenvalue on the
necklace quantum described in the text. The left eigenfunction has two nodes on
“strings” and four local extrema on “pearls”, while the right eigenfunction has four
nodes on “pearls” and two local extrema on “strings.”

bifurcation occurs on Branch 2 at point D, giving rise to Branch 6, along which the
standing wave on the string moves away from the string’s center and toward a ver-
tex. Branches 5 and 6 appear to converge as Λ is further decreased. Representative
standing waves along these five branches of the bifurcation diagram at Λ ≈ −4 are
shown in Fig. 2.7(c) above.

Finally, conducting a proper continuation study of standing waves on an infinite
necklace is difficult. For a fixed number of pearls, the total width of the standing
wave is restricted by the circumference, but in the infinite limit, branches 2 and 3
bifurcate not from the solution of constant amplitude, but from the zero solution, with
a width that diverges as the amplitude goes to zero. The limiting behavior exists for
the standing waves of the standard cubic NLS problem. However, in that case, a
standard method allows the width of the interval to increase, namely using a non-
uniform discretization that widens to accommodate the slowing spatial decay rate.
Such a trick is unavailable on the quantum graph, where the length scale imposed by
the graph’s edges precludes this approach.

A.2. Evolutionary PDE.

A.2.1. Simple methods. Before describing the use of the solvers described
in Sec. 2.4, we use QGLAB to construct some basic solvers of the type seen in an
elementary class on numerical PDE to demonstrate the simplicity of setting up and
solving initial value problems of the heat and wave equations.

The Crank-Nicholson method for the heat equation. A common method
to solve the heat equation

(A.2)
∂u

∂t
= △u

is the Crank-Nicholson method, which iterates(
I− h

2
L

)
un+1 =

(
I+

h

2
L

)
un.
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Where un is the discretized solution at time tn = nh and L is the discretized Laplacian
matrix. In QGLAB, this is evaluated on the interior grid to give(

Pint −
h

2
Lint

)
ψn+1 =

(
Pint +

h

2
Lint

)
ψn.

Combining this with homogeneous vertex conditions yields(
PVC − h

2
LVC

)
ψn+1 =

(
P0 +

h

2
L0

)
ψn.

We solve this problem on the dumbbell graph in the live script heatOnDumbbell.
After removing the code for plotting and calculating the conserved total heat, the
code reads

52 Phi=quantumGraphFromTemplate ( ’ dumbbell ’ ) ;
53 y=Phi . applyFunctionsToAllEdges ({@(x ) (2−2∗ cos (x−pi /3) ) ,1 , @cos

}) ;
54 dt =0.01; tF ina l =10; nStep=tF ina l /dt ;
55 Lint=Phi . wideLaplacianMatrix ;
56 Pint=Phi . i n t e rpo l a t i onMat r i x ;
57 Lplus=Phi . extendWithZeros ( Pint+dt /2∗Lint ) ;
58 Lminus=Phi . extendWithVC( Pint−dt /2∗Lint ) ;
59 f o r k=1:nStep
60 y = Lminus \( Lplus∗y ) ;
61 end

This solution’s initial and final states are shown in Fig. A.7. The total heat is con-
served to twelve digits by this calculation.

Fig. A.7: The initial (blue) and final (red) states of the heat equation on a dumbbell
graph computed using the Crank-Nicholson code in the text.

The leapfrog method for nonlinear Klein-Gordon equations. The time-
stepping methods described in Sec. 2.4 are only set up to solve ODE of the form (2.26)
and cannot handle equations of higher order in time. The following example, con-
tained in the live script sineGordonOnTetra.mlx, illustrates as a second-order ex-
ample the sine-Gordon equation on the tetrahedron quantum graph, considered pre-
viously in [37], which is formed from a wave equation provided with a sinusoidal
potential,

(A.3) Ψtt −△Ψ+ sinΨ = 0.
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As with other problems, we first discretize the equation in time only with a time step
h, so that Ψn is the solution at discrete time t = nh. Applying second-order centered
differences in time gives an iteration of the form

(A.4) Ψn+1 = Ψn + (Ψn −Ψn−1) + h2 (△Ψn − sinΨn) .

Applying the discretization in space gives

(A.5) Pintψn+1 = Pint

(
ψn + (ψn −ψn−1)− h2 sinψn

)
+ h2Lintψn

and enforcing the vertex conditions gives

PVCψn+1 = P0

(
ψn + (ψn −ψn−1)− h2 sinψn

)
+ h2L0ψn.

The initial conditions ψ|t=0= ψ0 and ∂
∂tψ|t=0= ϕ0 are given. Because the leapfrog

scheme is a multistep method, it requires an approximation to ψ|t=h that is accurate
to O(h2) and satisfies the vertex conditions. This solves

PVCψ1 = P0

(
ψ0 + hϕ0 −

h2

2
sinψ0

)
+
h2

2
L0ψ0.

The line of the live script that executes the time-stepper in Eq. (A.5) is

62 u2 = PVC\(P0∗( u1 + (u1−u0 ) − dt ˆ2∗ s i n ( u1 ) ) + dt ˆ2∗L0∗u1 ) ;

The sine-Gordon equation on the line supports solitons, traveling solutions of the
form

ψ(x, t) = 4 tan−1
(
e(x−ct)/

√
1−c2

)
, for any − 1 < c < 1.

Following [37], we initialize kinks on three edges of the graph formed by the edges
of a regular tetrahedron, heading away from their common vertex. We consider two
initial conditions: the first with c = 0.9 and the second with c = 0.95. These are
plotted in Fig. A.8, with the tetrahedron flattened into the shape of a wheel with
three spokes (thus, distance in the plot does not uniformly represent distance on the
metric graph). The top row shows the first case, in which the three solitons are
reflected after encountering vertices, while in the second case, the faster solitons can
pass through the vertices.
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Fig. A.8: Evolution of sine-Gordon solitons propagating along the edges of a tetra-
hedron. (Top) the vertices reflect solitons with c = 0.9 while (Bottom) those with
c = 0.95 are transmitted.
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A.2.2. The DAE formulation using MATLAB’s ODE solvers. Kairzhan
et al. consider the cubic NLS equation posed on a “star graph” consisting of three
half-lines joined at a single vertex [52]. The evolution conserves mass, i.e., the squared
L2 norm (1.4), and the energy (1.10), but in general, does not conserve momentum.
If, however, the parameters wm are appropriately chosen in the weighted Kirchhoff-
Robin vertex condition (1.2) to form a so-called “balanced” star graph and the initial
condition is chosen to lie in a particular invariant subspace, then the dynamics on
this graph reduce to the dynamics of the NLS equation on the whole line, and the
momentum is conserved, as are all other conserved quantities.

We simulate the collision of a soliton propagating on edge e1 toward the vertex
results in Fig. A.9 (an expanded version of Fig. 2.8 above) using the DAE solver
qgde23t, which is recommended for moderately stiff problems. The first simulation
is computed on a “balanced” graph whose vertex condition is defined by the weight
vector w = (2, 1, 1) in the first line of the following script.

63 Phi = quantumGraphFromTemplate ( ’ s t a r ’ , ’LVec ’ ,8∗ pi , ’ weight ’ , [ 2
1 1 ] ) ;

64 i n i t 1 = @(x ) exp (1 i ∗x ) .∗ sech (x−4∗pi ) ;
65 i n i t 2 = @(x ) exp(−1 i ∗x ) .∗ sech (x+4∗pi ) ;
66 u0 = Phi . applyFunctionsToAllEdges ({ i n i t 1 , i n i t 2 , i n i t 2 }) ;
67 mu = −1 i ;
68 F =@( t , z ) −2 i ∗ z . ˆ2 .∗ conj ( z ) ;
69 [ t , u ] = Phi . qgde23t (mu,F , 0 : . 5 : 1 1 , u0 , ’ AbsTol ’ ,1 e−6, ’ RelTol ’ ,1 e

−4) ;

In the second simulation, the weight vector is changed to w = (1, 1, 1). In the first
simulation, the soliton splits into two, each new soliton propagating along the edge
with its original amplitude and velocity, while in the second simulation, much of the
soliton’s energy is reflected and propagates backward along the incoming edge. Both
simulations conserve the energy and mass to about four digits, while only the first
simulation conserves momentum.

For stiff systems such as the KPP equation, a heat equation with quadratic non-
linearity,

ut = µ△u+ u(1− u),

QGLAB provides the implicit solver qgde15s. This system arises, for example, as a
model of species spread in an ecosystem. We consider the solution of this equation
with µ = 1 on a honeycomb graph in the demonstration KPPonHoneycomb and in
Fig. 2.9, which may be thought of as showing the spread of a species along a road
network.

A.2.3. Fixed-step Runge-Kutta solvers. The DAE solver that uses routines
from the MATLAB ODE suite can be replaced by the fixed-step fully implicit Runge-
Kutta solver qgdeN34DIRK or the implicit-explicit RK solver qgdeSDIRK443. Without
documenting a full convergence or timing study, we may report that, on the first
author’s M1 Mac laptop, the simulation reported in Fig. A.9 took about 3 seconds of
run time. Choosing the time step small enough to achieve the same accuracy in the
conserved quantities, the fully implicit method took about 1500 seconds, while the
implicit-explicit method took only 1.5 seconds—the clear winner in this contest.

Appendix B. Function Listing and Detailed Instructions. QGLAB is
implemented as a MATLAB Project. After starting MATLAB, the user should open
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Fig. A.9: Collision of an NLS soliton with the vertex of a star graph. Top: The abso-
lute value of the solution ψ. (Left) Initial time. (Center) Final time, balanced graph.
(Right) Final time, unbalanced graph. Bottom: Relative changes in the computed
conserved quantities (Left) Mass. (Center) Energy. (Right) Momentum. The solid
blue line shows the balanced graph, and the dashed red line shows the unbalanced
graph. While both the energy and mass are well conserved by the evolution in both
problems, only the balanced graph conserves the momentum.

the folder titled Quantum-Graphs, whose subfolder structure is shown in Fig. B.1.
Among the files listed in the MATLAB Desktop’s Current Folder pane is the project
file QGobject.prj, which can be opened by double clicking. This opens the Project
Window, adds the necessary QGLAB directories to MATLAB’s search path, and
changes the plotting preferences needed to render the graphics correctly. To end
the QGLAB session, close the Project Window or quit MATLAB. This will remove
the QGLAB directories from the search path and restore the user’s default plotting
preferences, which are held in the folder tmp while QGLAB is running.

The MATLAB code is contained in the subfolders of the folder source. Most im-
portantly, the folder @quantumGraph contains the constructor file quantumgraph.m,
which defines the class and initiates an instance, as well as all the class methods,
i.e., the functions that act on quantum graph objects. As their first input argument,
all MATLAB methods must have a qg object G. For example, the overloaded eigen-
solver method eigs is defined as function [v,d]=eigs(G,n), where n is the number of
eigenvalues to calculate. It can be called using either the standard function syntax
[v,d]=eigs(G,n) or with the preferred syntax for methods [v,d]=G.eigs(n).

B.1. The Quantum Graph Constructor. The first step to working with
QGLAB is initializing a quantum graph object using its constructor function titled
quantumGraph. As detailed in Sec. 3.2, it takes three required arguments
• source and target are two vectors of positive integers. The entries source(j)

and target(m) represent the initial and final nodes of the edge em. Thus,
these two vectors must be of the length |E| and each integer m satisfying
1 ≤ m ≤ |V| must appear in at least one of the two vectors to guarantee that
the graph is connected. MATLAB’s digraph constructor automatically sorts
the edges to avoid confusion, quantumGraphchecks to make sure the edges are
sorted the same way and throws an error if they are not.
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Quantum-Graphs

data

documentation

source

@quantumGraph

chebyshev

continuation

examples

chebyshev

evolution
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startup shutdown

templates

user

utilities

tests

tmp

Fig. B.1: Directory structure of QGLAB

• L May be either a positive real number or a vector of length |E| of positive real
numbers. If L is scalar, the constructor assumes all edges are the same length.

It also may take the following optional arguments
• Discretization One may take the values ‘Uniform’ (default), ‘Chebyshev’, or

‘None’. If ‘None’, then no discretization is constructed, and the only avail-
able method, besides simple methods that query the graph’s properties, is
secularDet, which computes the secular determinant.

• nxVec Defines the number of points used to discretize the edges. A vector value gives
the number of discretization points on each edge, but if scalar, its behavior
depends on the discretization; if ‘Uniform’, then it gives the approximate
number of points per unit edge length, while if ‘Chebyshev’, then it gives
the number of discretization points on each edge. Default: 20.

• RobinCoeff The vector of Robin coefficients αn in Eq. (1.2). Use the value NaN

to indicate the Dirichlet boundary condition (1.3). If scalar, apply the same
value at all vertices. Default: 0.

• Weight The vector of weights wm in Eq. (1.2). If scalar, apply the same value at
all vertices. Default: 1.

• nodeData The vector of nonhomogeneous vertex terms ϕn in the Poisson prob-
lem (2.10c). If scalar, apply the same value at all vertices. Default: 0.

• plotCoordinateFcn The handle of a function defining the layout of the edges and
vertices for plotting. Associates coordinate arrays x1, x2, and (optionally) x3
to each edge and to the vertices. If left unset, then plotting is not possible.
It can be set later using the function addPlotCoordinates.

The constructor runs several checks on the inputs to ensure they are consistent and
meaningful, returning descriptive error messages if these checks fail.
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B.2. Properties of a quantumGraph object. Many of the properties of a des-
ignated quantumGraph object are detailed in Sec. 3.2, a complete list is given here,
filling in some additional details
• qg The digraph object, consisting of Edge and Node tables, each of which has the

additional required fields described in Sec. 3.2 as well as the optional fields
x1, x2, and x3 used for plotting.

• discretization A string labeling the discretization type is used to choose between
uniform and Chebyshev algorithms.

• wideLaplacianMatrix The Laplacian matrix Lint, with discretized boundary con-
dition rows at the bottom, defined in Eq. (2.11) and illustrated by the two
upper matrix blocks in Figs. 2.2(b) and 2.4(b).

• interpolationMatrix The matrix Pint that interpolates from the extended grid
to the interior grid as defined in Eq. (2.12), as illustrated by the two upper
matrix blocks in Figs. 2.2(c) and 2.4(c).

• discreteVCMatrix The matrix MVC containing the discretization of the vertex
conditions, as defined in Eq. (2.11), (2.12) and illustrated by the two lower
matrix blocks in Figs. 2.2(b) and 2.4(b).

• nonhomogeneousVCMatrix The matrix MNH defined in Eq. (2.13) used to define
nonhomogeneous terms in the vertex condition to the correct rows.

• derivativeMatrix The square first derivative matrix which does not include bound-
ary conditions. This is used for calculating integrals, including the energy and
momentum, which may or may not be conserved based on the vertex condi-
tions.

B.3. Methods defined for a quantumGraph object.

B.3.1. MATLAB digraph methods overloaded for quantumGraph objects.
MATLAB features many functions for analyzing, querying, and manipulating directed
graphs. The command indegree(G,1) returns the incoming degree of the vertex v1
of a graph G. This could be applied to the qg field of a quantum graph Φ by using the
command indegree(Phi.qg,1), but it is preferable in object-oriented programming
to overload this function so that can be applied directly as indegree(Phi,1) Several
other low-level directed graph functions have been similarly overloaded:
• Edges, Nodes, indegree, outdegree, numedges, numnodes, rmnode.

B.3.2. Other quantumGraph methods. The following provide directed graph
related functionality not in MATLAB’s digraph toolbox:

• source, target, follows, sharednode, incomingedges, outgoingedges, isleaf.

The following functions query specific properties of quantum graphs, edges, or vertices:
• nx, dx, weight, L, robinCoeff, isUniform, isChebyshev, isDirichlet.

The following are utilities for working with quantumGraph objects:
• addPlotCoords Given a user-provided script defining the plotting coordinates x1,

x2, and, optionally, x3, runs the script and associates the coordinates to both
the edge and vertex tables.

• graph2column and column2graph transfer data back and forth between the edge-
vertex representation and a single-column vector. The latter function uses
the discretized vertex conditions to interpolate the data at the vertices.

• applyFunctionToEdge The call G.applyfunctionToEdge(fhandle,m) applies the
function represented by the function handle fhandle to the edge em and
stores the result in G.Edges.y{m}. If fhandle is a number c, then the output
G.Edges.y{m} will be a constant-valued vector of the appropriate length.

• applyFunctionsToAllEdges If handleArray is a cell array containing |E| function
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handles and constants, this function applies applyFunctionToEdge to each
function/constant and edge in the quantum graph.

• applyGraphicalFunction This applies a function, input as its function handle, to
the plotting coordinates x1, x2, and (optionally) x3 defined for each function
and edge. This convenience function is used to create initial guesses for the
nonlinear standing wave solvers.

• addEdgeField and addNodeField

The following functions perform mathematical operations on quantumGraphobjects,
automatically choosing the appropriate program for the discretization method used:

• integral Computes the weighted integral
∫
Γ
Ψdx =

∑|E|
m=1

∫
em
ψm(x) dx .

• norm Uses integral to compute the Lp norm (1.4).
• dot Uses integral to compute the L2 inner product (1.5).
• energyNLS Uses integral to compute the NLS energy (1.10).
• eigs Computes n eigenvalues closest to zero.
• secularDet Computes the real-valued secular determinant defined briefly in Sec. 1.2

using the MATLAB Symbolic Mathematics Toolbox. This works for all the
boundary conditions discussed in this article but requires the edge weights to
satisfy wm ≡ 1.

• solvePoisson Solves the Poisson problem (2.10).
The following functions are for visualizing quantumGraph objects:
• plot The call G.plot plots the data currently stored in the yentries of the Edges

and Nodes tables, using the coordinates stored in the x1, x2 and x3 table
entries. If x3 is not defined, then it plots the function in three dimensions
over the skeleton of the graph. If it is defined, then the function is plotted
in false color. The call G.plot(z) first calls G.column2graph(z) and then
plots.

• pcolor Plots the function in false color on the quantum graph in two dimensions. It
is useful for visualizing highly complex graphs, as seen by comparing the two
plots of a function defined over the edges of a randomly generated Delaunay
triangulation, shown in Fig. B.2.

70 Phi=delaunaySquare ( ’n ’ , 8 ) ;
71 f=@(x1 , x2 ) s i n (2∗ pi ∗x1 ) .∗ s i n (2∗ pi ∗x2 ) ;
72 Phi . applyGraphica lFunct ion ( f ) ;
73 Phi . p l o t ; f i g u r e ; Phi . pco l o r

• spy The call G.spy uses the MATLAB spy function to plot the nonzero entries in
the three matrices G.wideLaplacianMatrix, G.interpolationMatrix, and
G.nonhomogeneousVCMatrix.

• animatePDESolution Given a vector of times t and an array u whose columns give
the numerical solution to a PDE at those times, animates the solution, taking
special care that the viewing axes are fixed throughout the visualization.
Automatically uses false color to plot graphs with a three-dimensional layout.
To animate a PDE solution using false color on a two-dimensional layout, use
animatePDESolution2DColor.

Additional programs not called by the end-user exist, which we do not document.

B.4. The template library. The package features a library of graphs, many
of which have been studied in the quantum graph literature, which is stored in the
folder source/templates. Their use is demonstrated in the live script that is titled
templateGallery.mlx. These fall into a few groups. Almost all depend on several
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Fig. B.2: Visualization of a function defined on a random graph using (left) plot and
(right) pcolor, where zeros are indicated with black dots.

user-provided parameters for which default values are provided.

Individual graphs. Several simple graphs are provided in the template library
and are called using the command G=quantumGraphFromTemplate(tag,varargin),
where tag is the name of the template and varargin is used by MATLAB to indicate
a variable-length input argument list, and is here used to enter using the same key-
value syntax as the quantumGraph command. The graph produced by running:

G=quantumGraphFromTemplate(’bubbleTower’,’L’,10,’circumferences’,[6∗pi 4∗pi 2∗pi])
is shown in Fig. B.3. The default graph in this family has five vertices and seven
edges. Bubble tower graphs with infinite-length base edges have featured extensively
in the quantum graph literature as examples where one can still find a ground state
even though a certain graph topology condition is satisfied by this family that would
normally preclude the existence of a ground state, see [1, 5, 6]. The underlying
symmetry of the construction here is crucial to the analysis.

Fig. B.3: The default bubbleTower quantum graph, with five vertices and seven edges.

The quantumGraphFromTemplate function calls two separate functions
• A template function, here bubbleTower.m, that builds the quantum graph,
setting the lengths of the two straight line segments to 10 and the circum-
ferences of the three bubbles to [6π, 4π, 2π], setting the discretization, and
building the necessary matrices.
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• A plot coordinates function, here bubbleTowerPlotCoords.m, that places
the vertices at locations consistent with the above-defined lengths. In this ex-
ample, two edges are laid out as line segments, created using the command
straightEdge, four edges are laid out as semicircular edges by using the com-
mand semicircularEdge, and there is one circular edge, created using the
command circularEdge. A fourth function circularArcEdge can connect
two nodes by a circular arc subtending a central angle theta.

B.4.1. Two-dimensional lattices. The following templates exist to create
two-dimensional lattices. All have default values and can be customized to change
the number of cells per side. These programs are called directly and set plotting
coordinates without calling quantumGraphFromTemplate.
• rectangularArray creates a rectangular array. By default, the sides have unit

length but can be customized.
• triangularArray creates a triangular array. The unit cell is an equilateral triangle

by default, but the period vectors can be customized.
• hexagonalArray creates a hexagonal array, forming a parallelogram, the default

shown in Fig.
• hexGrid creates a rectangular array of hexagons.
• hexGridPeriodic identifies the left edge with the right and the top edge with the

bottom to create a periodic array.
• hexOfHexes A hexagonal array of hexagons.
• triangularArray A triangular array.

Three-dimensional geometric templates. The program solidTemplate con-
structs quantum graphs whose vertices and edges are the vertices and edges of geo-
metric solids, including the five Platonic solids (tetrahedron, cube, octahedron, do-
decahedron, and icosahedron), as well as the cuboctahedron, which has 24 edges and
12 vertices, and the buckyball (or truncated icosahedron) which has 90 edges and 60
vertices. This is called directly and sets up the plot coordinates. Sec. 3.3.1 gives an
example of constructing a tetrahedron.

B.5. Continuation and bifurcation routines. The live script that is titled
continuationInstructions.mlx in the documentation directory uses all the follow-
ing subroutines in the given order after constructing a quantumGraph object named
Phi. We refer to line numbers in this live script to describe the steps taken to com-
pute the bifurcation diagrams. To run the continuation software, the user must use a
template from the source/templates or create one themselves, including a properly
named function to create the plotting coordinates. We will assume that the tem-
plate’s name is stored in a variable named tag. In the example tag=’dumbbell’.
As explained below, the results of the computation will be stored in the directory
dataDir=’data/dumbbell/001’ with the trailing number incremented each time a
bifurcation diagram is created. Each computed branch of solutions is stored in its
own subdirectory, with consecutively labeled names, beginning branch001, etc. Most
of the programs given below add a line to a log file named logfile.txt that resides
in the data directory.
• makeContinuationDirectory After initializing the discretized quantum graph on

which families of solutions are to be computed, create a sequentially named
directory to hold the data. see line 5. Saves a file template.mat containing
the qg object.
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• saveEigenfunctions Calculate some eigenvalues and eigenfunctions of the Lapla-
cian matrix and save them to the data directory with names lambda.001 and
eigenfunction.001.

• saveNLSFunctionsGraph Saves a file named fcns.mat to the data directory. This
file contains one variable: a structure x whose fields contain a function handle
to the discretized form of Equation (1.9), as well as several derivatives of this
function, and the antiderivative of the nonlinearity, used in computing the
energy.

• continuerSet This function is used to set several parameters the continuation
algorithms use. It assigns them to a structure, usually named options, which
is then passed to the various continueFrom programs described below. It
takes as input a sequence of name-value pairs, imitating the programs odeset
and optimset used in MATLAB’s ODE and optimization routines. The
parameters it sets are:
• maxTheta The maximum angle, in degrees, between two consecutive seg-

ments on a branch of solutions. Default value: 4◦.
• minNormDelta The minimum step length below which the continuation

solver does not attempt to refine the branch further. Default value:
10−3.

• beta The weight in the inner product defined by〈
Φ1(x)e

iΛ1t,Φ2(x)e
iΛ2t
〉
= ⟨Φ1,Φ2⟩+ β⟨Λ1,Λ2⟩,

used in defining angles and distances in the above two variables. Default
value: 0.1.

• NThresh Threshold for the power N , i.e., the squared L2-norm, so the con-
tinuation routine terminates when this value is crossed. Default value:
4.

• LambdaThresh Threshold for the frequency Λ, so the continuation routine
terminates when this value is crossed. Default value: -1.

• maxPoints The maximum number of points to compute on a given branch.
Default value: 999.

• saveFlag A boolean variable. If true, then data is saved to files. Default:
True.

• plotFlag A boolean variable. If true, then data is plotted to screen. De-
fault: True.

• verboseFlag A boolean variable. If true, then some information is printed
to the MATLAB Desktop. Default: True.

• Four continuation programs that are initiated from different starting points.
• continueFromEig Compute a branch of stationary solutions that bifur-

cates from Ψ = 0 with a frequency given by an eigenvalue, in the direc-
tion of an eigenfunction, using the data saved by the above command
saveEigenfunctions; cf. lines 13-15 of the live script.

• continueFromBranchPoint Compute a branch of stationary solutions that
bifurcates from a branch point. While computing a curve of solutions,
the continuation routines monitor for branching bifurcations (pitchfork
and transcritical, which are mathematically equivalent in the pseudo-
arclength formulation). When it detects a bifurcation between two com-
puted solutions, it computes the exact frequency at which the bifurcation
occurs and the solution at the bifurcation point.
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• continueFromSaved Continue from a previously-computed solution to the
stationary computed using saveHighFrequencyStandingWave (called
here), which computes and saves a solution with an initial guess built
from sech-like functions defined on the edges,
saveHighFrequencyStandingWaveGraphical,
which computes solution based on an initial guess that places a “bump”
somewhere on the graph defined from its plotting coordinates, a or a
user-written function.
On line 35 of the example, a solution with positive sech pulses of edges
1 and 2 of the dumbbell is saved to files:
savedFunction.001 and savedFunction.001

in the folder data/dumbbell/001. A branch continuing from this solu-
tion is computed at line 38.

• continueFromEnd Extends a previously-computed branch.
• bifurcationDiagram Draws a bifurcation diagram from the data in a given direc-

tory and its subdirectories. By default, it plots the frequency on the x-axis
and the squared L2-norm on the y-axis, but these defaults can be overwritten.

• rmBranch Removes the subdirectory containing a given branch from the bifurcation
diagram directory.

• plotSolution Plots a single solution from a given diagram and branch.
• animateBranch Animates how the individual solutions change as a branch of the

bifurcation diagram is traversed.
• addComment Adds a string to the log file logfile.txt in the given directory.

We examine the files contained in the directory branch001, which was created
online 13 of the live script by continueFromEig.
• PhiColumn.xxx Where xxx is a three-digit integer n. The nth solution on branch

1.
• NVec, LambdaVec, and energyVec Column vectors containing the squared L2-norm,

the frequency, and the energy, which are the three variables that can be
plotted using the bifurcationDiagram program. The nth entry in each
vector corresponds to the nth solution in the previous bullet point.

• k The number of PhiColumn files and the length of the vectors of integrals.
• initialization A text file containing one-word denoting which of the four contin-

uation programs coninueFromXXX was used to initialize the branch, in this
case Eigenfucntion.

• eignumber The number of the eigenfunction from which the solution was continued.
• options.mat The options structure set by the continuerSet program.
• bifTypeVec A column vector of integers, with the value 0 if solution n is a regular

point on the branch, the value 1 at branching bifurcations, and the value -1
at folds.

• phiPerturbationXXX.mat and LambdaPerturbationXXX.mat Here xxx is a three-
digit number at which a branching bifurcation has been detected, and the files
contain the directions in which the new branch points from the bifurcation
location, used by the function continueFromBranchPoint.

B.6. Other folders.
• data An empty folder where the continuation routines store the data they produce.
• documentation Contains live scripts demonstrating the main features entitled

quantumGraphRoutines.mlx, continuationInstructions.mlx, and
continuationInstructionsChebyshev.mlx.
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• source/chebyshev Contains many programs used to construct the Chebyshev dis-
cretization.

• source/examples Contains example programs sorted into three further subfolders:
• source/examples/chebyshev Contains examples involving the Chebyshev

discretization, all of which are minor modifications of examples from the
stationary folder.

• source/examples/evolution Examples illustrating the solution to time-
dependent problems.

• source/examples/stationary Examples of time-independent problems:
eigenproblems, Poisson problems, and continuation problems.

• source/startup shutdown Contains programs that are run upon starting up and
shutting down QGLAB.

• source/user An empty folder intended to give end-users a place to store code they
write without mixing it with package code.

• source/utilities Some utilities used for file management and formatting plots.
• tmp A temporary folder created at startup and removed at shutdown, where the

user’s plotting preferences are stored to be automatically restored upon shut-
ting down quantumGraph.
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pulse transmission, in Polynômes Orthogonaux et Applications: Proc. Laguerre
Sympos, Bar-le-Duc, Oct 15–18, 1984, Springer, 1985, pp. 532–541.

[67] D. Noja, Nonlinear Schrödinger equation on graphs: recent results and open
problems, Phil. Trans. R. Soc. A, 372 (2014), p. 20130002.

[68] D. Noja, D. Pelinovsky, and G. Shaikhova, Bifurcations and stability of
standing waves in the nonlinear Schrödinger equation on the tadpole graph, Non-
linearity, 28 (2015), p. 2343.

[69] B. Osting and J. Marzuola, Spectrally optimized pointset configurations,
Constructive Approximation, 46 (2017), pp. 1–35.

[70] J. A. Pava and M. Cavalcante, Linear instability criterion for the Korteweg–
de Vries equation on metric star graphs, Nonlinearity, 34 (2021), p. 3373.

[71] O. Post, Spectral convergence of quasi-one-dimensional spaces, Ann. Henri
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